Small eigenvalues of the Neumann realization of the semiclassical Witten Laplacian
- [1] Laboratoire de Mathématiques, UMR-CNRS 8628, Université Paris-Sud 11, Bâtiment 425, 91405 Orsay, France
Annales de la faculté des sciences de Toulouse Mathématiques (2010)
- Volume: 19, Issue: 3-4, page 735-809
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topLe Peutrec, D.. "Small eigenvalues of the Neumann realization of the semiclassical Witten Laplacian." Annales de la faculté des sciences de Toulouse Mathématiques 19.3-4 (2010): 735-809. <http://eudml.org/doc/115880>.
@article{LePeutrec2010,
abstract = {This article follows the previous works [HeKlNi, HeNi] by Helffer-Klein-Nier and Helffer-Nier about the metastability in reversible diffusion processes via a Witten complex approach. Again, exponentially small eigenvalues of some self-adjoint realization of $\Delta _\{f,h\}^\{(0)\}=-h^\{2\}\Delta +\left|\nabla f(x)\right|^\{2\}-h\Delta f(x)$ are considered as the small parameter $h>0$ tends to $0$. The function $f$ is assumed to be a Morse function on some bounded domain $\Omega $ with boundary $\partial \Omega $. Neumann type boundary conditions are considered. With these boundary conditions, some possible simplifications in the Dirichlet problem studied in [HeNi] are no more possible. A finer treatment of the three geometries involved in the boundary problem (boundary, metric, Morse function) is here carried out.},
affiliation = {Laboratoire de Mathématiques, UMR-CNRS 8628, Université Paris-Sud 11, Bâtiment 425, 91405 Orsay, France},
author = {Le Peutrec, D.},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Friedrich extension; quasi-mode; WKB construction; boundary complex; localization of the spectrum; Morse function},
language = {eng},
number = {3-4},
pages = {735-809},
publisher = {Université Paul Sabatier, Toulouse},
title = {Small eigenvalues of the Neumann realization of the semiclassical Witten Laplacian},
url = {http://eudml.org/doc/115880},
volume = {19},
year = {2010},
}
TY - JOUR
AU - Le Peutrec, D.
TI - Small eigenvalues of the Neumann realization of the semiclassical Witten Laplacian
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2010
PB - Université Paul Sabatier, Toulouse
VL - 19
IS - 3-4
SP - 735
EP - 809
AB - This article follows the previous works [HeKlNi, HeNi] by Helffer-Klein-Nier and Helffer-Nier about the metastability in reversible diffusion processes via a Witten complex approach. Again, exponentially small eigenvalues of some self-adjoint realization of $\Delta _{f,h}^{(0)}=-h^{2}\Delta +\left|\nabla f(x)\right|^{2}-h\Delta f(x)$ are considered as the small parameter $h>0$ tends to $0$. The function $f$ is assumed to be a Morse function on some bounded domain $\Omega $ with boundary $\partial \Omega $. Neumann type boundary conditions are considered. With these boundary conditions, some possible simplifications in the Dirichlet problem studied in [HeNi] are no more possible. A finer treatment of the three geometries involved in the boundary problem (boundary, metric, Morse function) is here carried out.
LA - eng
KW - Friedrich extension; quasi-mode; WKB construction; boundary complex; localization of the spectrum; Morse function
UR - http://eudml.org/doc/115880
ER -
References
top- Bismut (J.M.).— The Witten complex and the degenerate Morse inequalities. J. Differ. Geom. 23, p. 207-240 (1986). Zbl0608.58038MR852155
- Bovier (A.), Eckhoff (M.), Gayrard (V.), and Klein (M.).— Metastability in reversible diffusion processes I: Sharp asymptotics for capacities and exit times. JEMS 6 (4), p. 399-424 (2004). Zbl1076.82045MR2094397
- Bovier (A.), Gayrard (V.), and Klein (M.).— Metastability in reversible diffusion processes II: Precise asymptotics for small eigenvalues. JEMS 7 (1), p. 69-99 (2004). Zbl1105.82025MR2120991
- Burghelea (D.).— Lectures on Witten-Helffer-Sjöstrand theory. Gen. Math. 5, p. 85-99 (1997). Zbl0936.58008MR1723597
- Chang (K.C.) and Liu (J.).— A cohomology complex for manifolds with boundary. Topological Methods in Non Linear Analysis, Vol. 5, p. 325-340 (1995). Zbl0848.58001MR1374068
- Cycon (H.L), Froese (R.G), Kirsch (W.), and Simon (B.).— Schrödinger operators with application to quantum mechanics and global geometry. Text and Monographs in Physics, Springer Verlag, 2nd corrected printing (2008). Zbl0619.47005MR883643
- Colin de Verdière (Y.), Pan (Y.), and Ycart (B.).— Singular limits of Schrödinger operators and Markov processes. J. Operator Theory 41, No. 1, p. 151-173 (1999). Zbl0990.47013MR1675188
- Dimassi (M.) and Sjöstrand (J.).— Spectral Asymptotics in the semi-classical limit. London Mathematical Society, Lecture Note Series 268, Cambridge University Press (1999). Zbl0926.35002MR1735654
- Duff (G.F.D.).— Differential forms in manifolds with boundary. Ann. of Math. 56, p. 115-127 (1952). Zbl0049.18804MR48136
- Duff (G.F.D.) and Spencer (D.C.).— Harmonic tensors on Riemannian manifolds with boundary. Ann. of Math. 56, p. 128-156 (1952). Zbl0049.18901MR48137
- Freidlin (M.I.) and Wentzell (A.D.).— Random perturbations of dynamical systems. Transl. from the Russian by Joseph Szuecs. 2nd ed. Grundlehren der Mathematischen Wissenschaften, 260, New York (1998). Zbl0522.60055MR1652127
- Gallot (S.), Hulin (D.), and Lafontaine (J.) Riemannian Geometry. Universitext, 2nd Edition, Springer Verlag (1993). Zbl0636.53001
- Gilkey (P.B.).— Invariance theory, the heat equation, and the Atiyah-Singer index theorem. Mathematics Lecture Series, 11, Publish or Perish, Wilmington (1984). Zbl0565.58035MR783634
- Goldberg (S.I.).— Curvature and Homology. Dover books in Mathematics, 3rd edition (1998). Zbl0962.53001MR1635338
- Guérini (P.) Prescription du spectre du Laplacien de Hodge-de Rham. Annales de l’ENS, Vol. 37 (2), p. 270-303 (2004). Zbl1068.58016MR2061782
- Helffer (B.).— Etude du Laplacien de Witten associé à une fonction de Morse dégénérée. Publications de l’université de Nantes, Séminaire EDP 1987-88.
- Helffer (B.).— Introduction to the semi-classical Analysis for the Schrödinger operator and applications. Lecture Notes in Mathematics 1336, Springer Verlag (1988). Zbl0647.35002MR960278
- Helffer (B.).— Semi-classical analysis, Witten Laplacians and statistical mechanics. World Scientific (2002). Zbl1046.82001
- Henniart (G.) .— Les inégalités de Morse (d’après E. Witten). Seminar Bourbaki, Vol. 1983/84, Astérisque No. 121-122, p. 43-61 (1985). Zbl0565.58033MR768953
- Helffer (B.), Klein (M.), and Nier (F.).— Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach. Matematica Contemporanea, 26, p. 41-85 (2004). Zbl1079.58025MR2111815
- Helffer (B.) and Nier (F.).— Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary. Mémoire 105, Société Mathématique de France (2006). Zbl1108.58018MR2270650
- Helffer (B.) and Sjöstrand (J.).— Multiple wells in the semi-classical limit I. Comm. Partial Differential Equations 9 (4), p. 337-408 (1984). Zbl0546.35053MR740094
- Helffer (B.) and Sjöstrand (J.).— Puits multiples en limite semi-classique II -Interaction moléculaire-Symétries-Perturbations. Ann. Inst. H. Poincaré Phys. Théor. 42 (2), p. 127-212 (1985). Zbl0595.35031MR798695
- Helffer (B.) and Sjöstrand (J.).— Puits multiples en limite semi-classique IV -Etude du complexe de Witten -. Comm. Partial Differential Equations 10 (3), p. 245-340 (1985). Zbl0597.35024MR780068
- Helffer (B.) and Sjöstrand (J.).— Puits multiples en limite semi-classique V - Etude des minipuits-. Current topics in partial differential equations, p. 133-186, Kinokuniya, Tokyo (1986). Zbl0628.35024MR1112146
- Holley (R.), Kusuoka (S.), and Stroock (D.).— Asymptotics of the spectral gap with applications to the theory of simulated annealing. J. Funct. Anal. 83 (2), p. 333-347 (1989). Zbl0706.58075MR995752
- Kolokoltsov (V.N.).— Semi-classical analysis for diffusions and stochastic processes. Lecture Notes in Mathematics 1724, Springer Verlag (2000). Zbl0951.60001MR1755149
- Kolokoltsov (V.N.), and Makarov (K.).— Asymptotic spectral analysis of a small diffusion operator and the life times of the corresponding diffusion process. Russian J. Math. Phys. 4 (3), p. 341-360 (1996). Zbl0912.58042MR1443178
- Koldan (N.), Prokhorenkov (I.), and Shubin (M.).— Semiclassical Asymptotics on Manifolds with Boundary. Preprint (2008). http://arxiv.org/abs/0803.2502v1 MR1500151
- Laudenbach (F.).— Topologie différentielle. Cours de Majeure de l’Ecole Polytechnique (1993).
- Le Peutrec (D.).— Small singular values of an extracted matrix of a Witten complex. Cubo, A Mathematical Journal, Vol. 11 (4), p. 49-57 (2009). Zbl1181.81050MR2571794
- Le Peutrec (D.).— Local WKB construction for Witten Laplacians on manifolds with boundary. Analysis & PDE, Vol. 3, No. 3, p. 227-260 (2010). Zbl1225.58012MR2672794
- Miclo (L.).— Comportement de spectres d’opérateurs à basse température. Bull. Sci. Math. 119, p. 529-533 (1995). Zbl0840.60057MR1364276
- Milnor (J.W.).— Morse Theory. Princeton University press (1963). Zbl0108.10401MR163331
- Milnor (J.W.).— Lectures on the -cobordism Theorem. Princeton University press (1965). Zbl0161.20302MR190942
- Nier (F.).— Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach. Journées “Equations aux Dérivées Partielles”, Exp No VIII, Ecole Polytechnique (2004). Zbl1067.35057MR2135363
- Persson (A.).— Bounds for the discrete part of the spectrum of a semi-bounded Schrödinger operator. Math. Scandinavica 8, p. 143-153 (1960). Zbl0145.14901MR133586
- Schwarz (G.).— Hodge decomposition. A method for Solving Boundary Value Problems. Lecture Notes in Mathematics 1607, Springer Verlag (1995). Zbl0828.58002MR1367287
- Simader (C.G.).— Essential self-adjointness of Schrödinger operators bounded from below. Math. Z. 159, p. 47-50 (1978). Zbl0409.35026MR470456
- Simon (B.).— Semi-classical analysis of low lying eigenvalues, I. Nondegenerate minima: Asymptotic expansions. Ann. Inst. H. Poincaré, Phys. Théor. 38, p. 296-307 (1983). Zbl0526.35027MR708966
- Witten (E.).— Supersymmetry and Morse inequalities. J. Diff. Geom. 17, p. 661-692 (1982). Zbl0499.53056MR683171
- Zhang (W.).— Lectures on Chern-Weil theory and Witten deformations. Nankai Tracts in Mathematics, Vol. 4, World Scientific (2002). Zbl0993.58014MR1864735
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.