Small eigenvalues of the Neumann realization of the semiclassical Witten Laplacian

D. Le Peutrec[1]

  • [1] Laboratoire de Mathématiques, UMR-CNRS 8628, Université Paris-Sud 11, Bâtiment 425, 91405 Orsay, France

Annales de la faculté des sciences de Toulouse Mathématiques (2010)

  • Volume: 19, Issue: 3-4, page 735-809
  • ISSN: 0240-2963

Abstract

top
This article follows the previous works [HeKlNi, HeNi] by Helffer-Klein-Nier and Helffer-Nier about the metastability in reversible diffusion processes via a Witten complex approach. Again, exponentially small eigenvalues of some self-adjoint realization of Δ f , h ( 0 ) = - h 2 Δ + f ( x ) 2 - h Δ f ( x ) are considered as the small parameter h > 0 tends to 0 . The function f is assumed to be a Morse function on some bounded domain Ω with boundary Ω . Neumann type boundary conditions are considered. With these boundary conditions, some possible simplifications in the Dirichlet problem studied in [HeNi] are no more possible. A finer treatment of the three geometries involved in the boundary problem (boundary, metric, Morse function) is here carried out.

How to cite

top

Le Peutrec, D.. "Small eigenvalues of the Neumann realization of the semiclassical Witten Laplacian." Annales de la faculté des sciences de Toulouse Mathématiques 19.3-4 (2010): 735-809. <http://eudml.org/doc/115880>.

@article{LePeutrec2010,
abstract = {This article follows the previous works [HeKlNi, HeNi] by Helffer-Klein-Nier and Helffer-Nier about the metastability in reversible diffusion processes via a Witten complex approach. Again, exponentially small eigenvalues of some self-adjoint realization of $\Delta _\{f,h\}^\{(0)\}=-h^\{2\}\Delta +\left|\nabla f(x)\right|^\{2\}-h\Delta f(x)$ are considered as the small parameter $h&gt;0$ tends to $0$. The function $f$ is assumed to be a Morse function on some bounded domain $\Omega $ with boundary $\partial \Omega $. Neumann type boundary conditions are considered. With these boundary conditions, some possible simplifications in the Dirichlet problem studied in [HeNi] are no more possible. A finer treatment of the three geometries involved in the boundary problem (boundary, metric, Morse function) is here carried out.},
affiliation = {Laboratoire de Mathématiques, UMR-CNRS 8628, Université Paris-Sud 11, Bâtiment 425, 91405 Orsay, France},
author = {Le Peutrec, D.},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Friedrich extension; quasi-mode; WKB construction; boundary complex; localization of the spectrum; Morse function},
language = {eng},
number = {3-4},
pages = {735-809},
publisher = {Université Paul Sabatier, Toulouse},
title = {Small eigenvalues of the Neumann realization of the semiclassical Witten Laplacian},
url = {http://eudml.org/doc/115880},
volume = {19},
year = {2010},
}

TY - JOUR
AU - Le Peutrec, D.
TI - Small eigenvalues of the Neumann realization of the semiclassical Witten Laplacian
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2010
PB - Université Paul Sabatier, Toulouse
VL - 19
IS - 3-4
SP - 735
EP - 809
AB - This article follows the previous works [HeKlNi, HeNi] by Helffer-Klein-Nier and Helffer-Nier about the metastability in reversible diffusion processes via a Witten complex approach. Again, exponentially small eigenvalues of some self-adjoint realization of $\Delta _{f,h}^{(0)}=-h^{2}\Delta +\left|\nabla f(x)\right|^{2}-h\Delta f(x)$ are considered as the small parameter $h&gt;0$ tends to $0$. The function $f$ is assumed to be a Morse function on some bounded domain $\Omega $ with boundary $\partial \Omega $. Neumann type boundary conditions are considered. With these boundary conditions, some possible simplifications in the Dirichlet problem studied in [HeNi] are no more possible. A finer treatment of the three geometries involved in the boundary problem (boundary, metric, Morse function) is here carried out.
LA - eng
KW - Friedrich extension; quasi-mode; WKB construction; boundary complex; localization of the spectrum; Morse function
UR - http://eudml.org/doc/115880
ER -

References

top
  1. Bismut (J.M.).— The Witten complex and the degenerate Morse inequalities. J. Differ. Geom. 23, p. 207-240 (1986). Zbl0608.58038MR852155
  2. Bovier (A.), Eckhoff (M.), Gayrard (V.), and Klein (M.).— Metastability in reversible diffusion processes I: Sharp asymptotics for capacities and exit times. JEMS 6 (4), p. 399-424 (2004). Zbl1076.82045MR2094397
  3. Bovier (A.), Gayrard (V.), and Klein (M.).— Metastability in reversible diffusion processes II: Precise asymptotics for small eigenvalues. JEMS 7 (1), p. 69-99 (2004). Zbl1105.82025MR2120991
  4. Burghelea (D.).— Lectures on Witten-Helffer-Sjöstrand theory. Gen. Math. 5, p. 85-99 (1997). Zbl0936.58008MR1723597
  5. Chang (K.C.) and Liu (J.).— A cohomology complex for manifolds with boundary. Topological Methods in Non Linear Analysis, Vol. 5, p. 325-340 (1995). Zbl0848.58001MR1374068
  6. Cycon (H.L), Froese (R.G), Kirsch (W.), and Simon (B.).— Schrödinger operators with application to quantum mechanics and global geometry. Text and Monographs in Physics, Springer Verlag, 2nd corrected printing (2008). Zbl0619.47005MR883643
  7. Colin de Verdière (Y.), Pan (Y.), and Ycart (B.).— Singular limits of Schrödinger operators and Markov processes. J. Operator Theory 41, No. 1, p. 151-173 (1999). Zbl0990.47013MR1675188
  8. Dimassi (M.) and Sjöstrand (J.).— Spectral Asymptotics in the semi-classical limit. London Mathematical Society, Lecture Note Series 268, Cambridge University Press (1999). Zbl0926.35002MR1735654
  9. Duff (G.F.D.).— Differential forms in manifolds with boundary. Ann. of Math. 56, p. 115-127 (1952). Zbl0049.18804MR48136
  10. Duff (G.F.D.) and Spencer (D.C.).— Harmonic tensors on Riemannian manifolds with boundary. Ann. of Math. 56, p. 128-156 (1952). Zbl0049.18901MR48137
  11. Freidlin (M.I.) and Wentzell (A.D.).— Random perturbations of dynamical systems. Transl. from the Russian by Joseph Szuecs. 2nd ed. Grundlehren der Mathematischen Wissenschaften, 260, New York (1998). Zbl0522.60055MR1652127
  12. Gallot (S.), Hulin (D.), and Lafontaine (J.) Riemannian Geometry. Universitext, 2nd Edition, Springer Verlag (1993). Zbl0636.53001
  13. Gilkey (P.B.).— Invariance theory, the heat equation, and the Atiyah-Singer index theorem. Mathematics Lecture Series, 11, Publish or Perish, Wilmington (1984). Zbl0565.58035MR783634
  14. Goldberg (S.I.).— Curvature and Homology. Dover books in Mathematics, 3rd edition (1998). Zbl0962.53001MR1635338
  15. Guérini (P.) Prescription du spectre du Laplacien de Hodge-de Rham. Annales de l’ENS, Vol. 37 (2), p. 270-303 (2004). Zbl1068.58016MR2061782
  16. Helffer (B.).— Etude du Laplacien de Witten associé à une fonction de Morse dégénérée. Publications de l’université de Nantes, Séminaire EDP 1987-88. 
  17. Helffer (B.).— Introduction to the semi-classical Analysis for the Schrödinger operator and applications. Lecture Notes in Mathematics 1336, Springer Verlag (1988). Zbl0647.35002MR960278
  18. Helffer (B.).— Semi-classical analysis, Witten Laplacians and statistical mechanics. World Scientific (2002). Zbl1046.82001
  19. Henniart (G.) .— Les inégalités de Morse (d’après E. Witten). Seminar Bourbaki, Vol. 1983/84, Astérisque No. 121-122, p. 43-61 (1985). Zbl0565.58033MR768953
  20. Helffer (B.), Klein (M.), and Nier (F.).— Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach. Matematica Contemporanea, 26, p. 41-85 (2004). Zbl1079.58025MR2111815
  21. Helffer (B.) and Nier (F.).— Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach: the case with boundary. Mémoire 105, Société Mathématique de France (2006). Zbl1108.58018MR2270650
  22. Helffer (B.) and Sjöstrand (J.).— Multiple wells in the semi-classical limit I. Comm. Partial Differential Equations 9 (4), p. 337-408 (1984). Zbl0546.35053MR740094
  23. Helffer (B.) and Sjöstrand (J.).— Puits multiples en limite semi-classique II -Interaction moléculaire-Symétries-Perturbations. Ann. Inst. H. Poincaré Phys. Théor. 42 (2), p. 127-212 (1985). Zbl0595.35031MR798695
  24. Helffer (B.) and Sjöstrand (J.).— Puits multiples en limite semi-classique IV -Etude du complexe de Witten -. Comm. Partial Differential Equations 10 (3), p. 245-340 (1985). Zbl0597.35024MR780068
  25. Helffer (B.) and Sjöstrand (J.).— Puits multiples en limite semi-classique V - Etude des minipuits-. Current topics in partial differential equations, p. 133-186, Kinokuniya, Tokyo (1986). Zbl0628.35024MR1112146
  26. Holley (R.), Kusuoka (S.), and Stroock (D.).— Asymptotics of the spectral gap with applications to the theory of simulated annealing. J. Funct. Anal. 83 (2), p. 333-347 (1989). Zbl0706.58075MR995752
  27. Kolokoltsov (V.N.).— Semi-classical analysis for diffusions and stochastic processes. Lecture Notes in Mathematics 1724, Springer Verlag (2000). Zbl0951.60001MR1755149
  28. Kolokoltsov (V.N.), and Makarov (K.).— Asymptotic spectral analysis of a small diffusion operator and the life times of the corresponding diffusion process. Russian J. Math. Phys. 4 (3), p. 341-360 (1996). Zbl0912.58042MR1443178
  29. Koldan (N.), Prokhorenkov (I.), and Shubin (M.).— Semiclassical Asymptotics on Manifolds with Boundary. Preprint (2008). http://arxiv.org/abs/0803.2502v1 MR1500151
  30. Laudenbach (F.).— Topologie différentielle. Cours de Majeure de l’Ecole Polytechnique (1993). 
  31. Le Peutrec (D.).— Small singular values of an extracted matrix of a Witten complex. Cubo, A Mathematical Journal, Vol. 11 (4), p. 49-57 (2009). Zbl1181.81050MR2571794
  32. Le Peutrec (D.).— Local WKB construction for Witten Laplacians on manifolds with boundary. Analysis & PDE, Vol. 3, No. 3, p. 227-260 (2010). Zbl1225.58012MR2672794
  33. Miclo (L.).— Comportement de spectres d’opérateurs à basse température. Bull. Sci. Math. 119, p. 529-533 (1995). Zbl0840.60057MR1364276
  34. Milnor (J.W.).— Morse Theory. Princeton University press (1963). Zbl0108.10401MR163331
  35. Milnor (J.W.).— Lectures on the h -cobordism Theorem. Princeton University press (1965). Zbl0161.20302MR190942
  36. Nier (F.).— Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach. Journées “Equations aux Dérivées Partielles”, Exp No VIII, Ecole Polytechnique (2004). Zbl1067.35057MR2135363
  37. Persson (A.).— Bounds for the discrete part of the spectrum of a semi-bounded Schrödinger operator. Math. Scandinavica 8, p. 143-153 (1960). Zbl0145.14901MR133586
  38. Schwarz (G.).— Hodge decomposition. A method for Solving Boundary Value Problems. Lecture Notes in Mathematics 1607, Springer Verlag (1995). Zbl0828.58002MR1367287
  39. Simader (C.G.).— Essential self-adjointness of Schrödinger operators bounded from below. Math. Z. 159, p. 47-50 (1978). Zbl0409.35026MR470456
  40. Simon (B.).— Semi-classical analysis of low lying eigenvalues, I. Nondegenerate minima: Asymptotic expansions. Ann. Inst. H. Poincaré, Phys. Théor. 38, p. 296-307 (1983). Zbl0526.35027MR708966
  41. Witten (E.).— Supersymmetry and Morse inequalities. J. Diff. Geom. 17, p. 661-692 (1982). Zbl0499.53056MR683171
  42. Zhang (W.).— Lectures on Chern-Weil theory and Witten deformations. Nankai Tracts in Mathematics, Vol. 4, World Scientific (2002). Zbl0993.58014MR1864735

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.