Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach.

Francis Nier[1]

  • [1] IRMAR, Université de Rennes 1, Campus de Beaulieu, F-35042 Rennes Cedex, France.

Journées Équations aux dérivées partielles (2004)

  • page 1-17
  • ISSN: 0752-0360

Abstract

top
We present here a simplified version of recent results obtained with B. Helffer and M. Klein. They are concerned with the exponentally small eigenvalues of the Witten Laplacian on 0 -forms. We show how the Witten complex structure is better taken into account by working with singular values. This provides a convenient framework to derive accurate approximations of the first eigenvalues of Δ f , h ( 0 ) and solves efficiently the question of weakly resonant wells.

How to cite

top

Nier, Francis. "Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach.." Journées Équations aux dérivées partielles (2004): 1-17. <http://eudml.org/doc/10600>.

@article{Nier2004,
abstract = {We present here a simplified version of recent results obtained with B. Helffer and M. Klein. They are concerned with the exponentally small eigenvalues of the Witten Laplacian on $0$-forms. We show how the Witten complex structure is better taken into account by working with singular values. This provides a convenient framework to derive accurate approximations of the first eigenvalues of $\Delta _\{f,h\}^\{(0)\}$ and solves efficiently the question of weakly resonant wells.},
affiliation = {IRMAR, Université de Rennes 1, Campus de Beaulieu, F-35042 Rennes Cedex, France.},
author = {Nier, Francis},
journal = {Journées Équations aux dérivées partielles},
keywords = {exponentially small eigenvalues; Witten Laplacian; Witten complex structure; weakly resonant wells},
language = {eng},
month = {6},
pages = {1-17},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach.},
url = {http://eudml.org/doc/10600},
year = {2004},
}

TY - JOUR
AU - Nier, Francis
TI - Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach.
JO - Journées Équations aux dérivées partielles
DA - 2004/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 17
AB - We present here a simplified version of recent results obtained with B. Helffer and M. Klein. They are concerned with the exponentally small eigenvalues of the Witten Laplacian on $0$-forms. We show how the Witten complex structure is better taken into account by working with singular values. This provides a convenient framework to derive accurate approximations of the first eigenvalues of $\Delta _{f,h}^{(0)}$ and solves efficiently the question of weakly resonant wells.
LA - eng
KW - exponentially small eigenvalues; Witten Laplacian; Witten complex structure; weakly resonant wells
UR - http://eudml.org/doc/10600
ER -

References

top
  1. J.M. Bismut. The Witten complex and the degenerate Morse inequalities. J. Differ. Geom. 23, 207-240 (1986). Zbl0608.58038MR852155
  2. A. Bovier, M. Eckhoff, V. Gayrard, and M. Klein : Metastability in reversible diffusion processes I. Sharp asymptotics for capacities and exit times. Preprint 2002. Zbl1076.82045
  3. A. Bovier, V. Gayrard, and M. Klein. Metastability in reversible diffusion processes II Precise asymptotics for small eigenvalues. Preprint 2002 (new version in 2004). To appear in JEMS. Zbl1105.82025MR2120991
  4. D. Burghelea. Lectures on Witten-Helffer-Sjöstrand theory. Gen. Math. 5, 85-99 (1997). Zbl0936.58008MR1723597
  5. Kung Ching Chang, Jiaquan Liu. A cohomology complex for manifolds with boundary. Topological methods in non linear analysis. Volume 5, 1995, p. 325-340. Zbl0848.58001MR1374068
  6. H.L Cycon, R.G Froese, W. Kirsch, and B. Simon. Schrödinger operators with application to quantum mechanics and global geometry. Text and Monographs in Physics. Springer-Verlag (1987). Zbl0619.47005MR883643
  7. M. Dimassi, J. Sjöstrand. Spectral Asymptotics in the semi-classical limit. London Mathematical Society. Lecture Note Series 268. Cambridge University Press (1999). Zbl0926.35002MR1735654
  8. G.F.D. Duff. Differential forms in manifolds with boundary. Ann. of Math. 56 (1952), p. 115-127. Zbl0049.18804MR48136
  9. G.F.D. Duff, D.C. Spencer. Harmonic tensors on Riemannian manifolds with boundary. Ann. of Math. 56 (1952), p. 128-156. Zbl0049.18901MR48137
  10. M.I. Freidlin, A.D. Wentzell. Random perturbations of dynamical systems. Transl. from the Russian by Joseph Szuecs. 2nd ed. Grundlehren der Mathematischen Wissenschaften. 260. New York (1998). Zbl0922.60006MR1652127
  11. I.C. Gohberg and M.G. Krejn. Introduction à la théorie des opérateurs linéaires non auto-adjoints dans un espace hilbertien. Monographies Universitaires de Mathématiques, No. 39. Dunod, Paris (1971). MR350445
  12. B. Helffer. Introduction to the semi-classical Analysis for the Schrödinger operator and applications. Springer Verlag. Lecture Notes in Math. n 1336 (1988). Zbl0647.35002MR960278
  13. B. Helffer. Semi-classical analysis, Witten Laplacians and statistical mechanics. World Scientific (2002). Zbl1046.82001
  14. B. Helffer, M. Klein, and F. Nier. Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach. Preprint 04-03, IRMAR, Univ. Rennes 1 (2004). Zbl1108.58018
  15. B. Helffer and F. Nier. Hypoellipticity and spectral theory for Fokker-Planck operators and Witten Laplacians. Prépublication 03-25 de l’IRMAR, Univ. Rennes 1 (sept. 2003). 
  16. B. Helffer and F. Nier. Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach : the case with boundary. In preparation. Zbl1067.35057
  17. B. Helffer and J. Sjöstrand. Multiple wells in the semi-classical limit I, Comm. in PDE, 9(4), p. 337-408, (1984). Zbl0546.35053MR740094
  18. B. Helffer and J. Sjöstrand. Puits multiples en limite semi-classique II -Interaction moléculaire-Symétries-Perturbations. Annales de l’IHP (section Physique théorique), Vol. 42, n 0 2, p. 127-212 (1985). Zbl0595.35031MR798695
  19. B. Helffer and J. Sjöstrand. Multiple wells in the semi-classical limit III. Math. Nachrichten 124, p. 263-313 (1985). Zbl0597.35023MR827902
  20. B. Helffer and J. Sjöstrand. Puits multiples en limite semi-classique IV -Etude du complexe de Witten -. Comm. in PDE, 10(3), p. 245-340 (1985). Zbl0597.35024MR780068
  21. F. Hérau and F. Nier. Isotropic hypoellipticity and trend to the equilibrium for the Fokker-Planck equation with high degree potential. Arch. Ration. Mech. Anal. 171, n 0 2, 151–218 (2004). Zbl1139.82323MR2034753
  22. R. Holley, S. Kusuoka, D. Stroock. Asymptotics of the spectral gap with applications to the theory of simulated annealing. J. Funct. Anal. 83, n 0 2, 333–347 (1989). Zbl0706.58075MR995752
  23. V.N. Kolokoltsov. Semi-classical analysis for diffusions and stochastic processes. Lecture Notes in Mathematics 1724. Springer Verlag, Berlin 2000. Zbl0951.60001MR1755149
  24. L. Miclo. Comportement de spectres d’opérateurs à basse température. Bull. Sci. Math. 119, p. 529-533 (1995). Zbl0840.60057MR1364276
  25. B. Simon. Trace ideals and their applications. Cambridge University Press IX, Lecture Notes Series vol. 35 (1979). Zbl0423.47001MR541149
  26. B. Simon. Semi-classical analysis of low lying eigenvalues, I.. Nondegenerate minima: Asymptotic expansions. Ann. Inst. Poincaré, 38, p. 296-307 (1983). Zbl0526.35027MR708966
  27. G. Schwarz. Hodge decomposition. A method for Solving Boundary Value Problems. Lect. Notes in Mathematics 1607, Springer (1995). Zbl0828.58002MR1367287
  28. E. Witten. Supersymmetry and Morse inequalities. J. Diff. Geom. 17, p. 661-692 (1982). Zbl0499.53056MR683171
  29. Weiping Zhang. Lectures on Chern-Weil theory and Witten deformations. Nankai Tracts in Mathematics. Vol. 4. World Scientific (2002). Zbl0993.58014MR1864735

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.