Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach.
Francis Nier[1]
- [1] IRMAR, Université de Rennes 1, Campus de Beaulieu, F-35042 Rennes Cedex, France.
Journées Équations aux dérivées partielles (2004)
- page 1-17
- ISSN: 0752-0360
Access Full Article
topAbstract
topHow to cite
topNier, Francis. "Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach.." Journées Équations aux dérivées partielles (2004): 1-17. <http://eudml.org/doc/10600>.
@article{Nier2004,
abstract = {We present here a simplified version of recent results obtained with B. Helffer and M. Klein. They are concerned with the exponentally small eigenvalues of the Witten Laplacian on $0$-forms. We show how the Witten complex structure is better taken into account by working with singular values. This provides a convenient framework to derive accurate approximations of the first eigenvalues of $\Delta _\{f,h\}^\{(0)\}$ and solves efficiently the question of weakly resonant wells.},
affiliation = {IRMAR, Université de Rennes 1, Campus de Beaulieu, F-35042 Rennes Cedex, France.},
author = {Nier, Francis},
journal = {Journées Équations aux dérivées partielles},
keywords = {exponentially small eigenvalues; Witten Laplacian; Witten complex structure; weakly resonant wells},
language = {eng},
month = {6},
pages = {1-17},
publisher = {Groupement de recherche 2434 du CNRS},
title = {Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach.},
url = {http://eudml.org/doc/10600},
year = {2004},
}
TY - JOUR
AU - Nier, Francis
TI - Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach.
JO - Journées Équations aux dérivées partielles
DA - 2004/6//
PB - Groupement de recherche 2434 du CNRS
SP - 1
EP - 17
AB - We present here a simplified version of recent results obtained with B. Helffer and M. Klein. They are concerned with the exponentally small eigenvalues of the Witten Laplacian on $0$-forms. We show how the Witten complex structure is better taken into account by working with singular values. This provides a convenient framework to derive accurate approximations of the first eigenvalues of $\Delta _{f,h}^{(0)}$ and solves efficiently the question of weakly resonant wells.
LA - eng
KW - exponentially small eigenvalues; Witten Laplacian; Witten complex structure; weakly resonant wells
UR - http://eudml.org/doc/10600
ER -
References
top- J.M. Bismut. The Witten complex and the degenerate Morse inequalities. J. Differ. Geom. 23, 207-240 (1986). Zbl0608.58038MR852155
- A. Bovier, M. Eckhoff, V. Gayrard, and M. Klein : Metastability in reversible diffusion processes I. Sharp asymptotics for capacities and exit times. Preprint 2002. Zbl1076.82045
- A. Bovier, V. Gayrard, and M. Klein. Metastability in reversible diffusion processes II Precise asymptotics for small eigenvalues. Preprint 2002 (new version in 2004). To appear in JEMS. Zbl1105.82025MR2120991
- D. Burghelea. Lectures on Witten-Helffer-Sjöstrand theory. Gen. Math. 5, 85-99 (1997). Zbl0936.58008MR1723597
- Kung Ching Chang, Jiaquan Liu. A cohomology complex for manifolds with boundary. Topological methods in non linear analysis. Volume 5, 1995, p. 325-340. Zbl0848.58001MR1374068
- H.L Cycon, R.G Froese, W. Kirsch, and B. Simon. Schrödinger operators with application to quantum mechanics and global geometry. Text and Monographs in Physics. Springer-Verlag (1987). Zbl0619.47005MR883643
- M. Dimassi, J. Sjöstrand. Spectral Asymptotics in the semi-classical limit. London Mathematical Society. Lecture Note Series 268. Cambridge University Press (1999). Zbl0926.35002MR1735654
- G.F.D. Duff. Differential forms in manifolds with boundary. Ann. of Math. 56 (1952), p. 115-127. Zbl0049.18804MR48136
- G.F.D. Duff, D.C. Spencer. Harmonic tensors on Riemannian manifolds with boundary. Ann. of Math. 56 (1952), p. 128-156. Zbl0049.18901MR48137
- M.I. Freidlin, A.D. Wentzell. Random perturbations of dynamical systems. Transl. from the Russian by Joseph Szuecs. 2nd ed. Grundlehren der Mathematischen Wissenschaften. 260. New York (1998). Zbl0922.60006MR1652127
- I.C. Gohberg and M.G. Krejn. Introduction à la théorie des opérateurs linéaires non auto-adjoints dans un espace hilbertien. Monographies Universitaires de Mathématiques, No. 39. Dunod, Paris (1971). MR350445
- B. Helffer. Introduction to the semi-classical Analysis for the Schrödinger operator and applications. Springer Verlag. Lecture Notes in Math. n1336 (1988). Zbl0647.35002MR960278
- B. Helffer. Semi-classical analysis, Witten Laplacians and statistical mechanics. World Scientific (2002). Zbl1046.82001
- B. Helffer, M. Klein, and F. Nier. Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach. Preprint 04-03, IRMAR, Univ. Rennes 1 (2004). Zbl1108.58018
- B. Helffer and F. Nier. Hypoellipticity and spectral theory for Fokker-Planck operators and Witten Laplacians. Prépublication 03-25 de l’IRMAR, Univ. Rennes 1 (sept. 2003).
- B. Helffer and F. Nier. Quantitative analysis of metastability in reversible diffusion processes via a Witten complex approach : the case with boundary. In preparation. Zbl1067.35057
- B. Helffer and J. Sjöstrand. Multiple wells in the semi-classical limit I, Comm. in PDE, 9(4), p. 337-408, (1984). Zbl0546.35053MR740094
- B. Helffer and J. Sjöstrand. Puits multiples en limite semi-classique II -Interaction moléculaire-Symétries-Perturbations. Annales de l’IHP (section Physique théorique), Vol. 42, n2, p. 127-212 (1985). Zbl0595.35031MR798695
- B. Helffer and J. Sjöstrand. Multiple wells in the semi-classical limit III. Math. Nachrichten 124, p. 263-313 (1985). Zbl0597.35023MR827902
- B. Helffer and J. Sjöstrand. Puits multiples en limite semi-classique IV -Etude du complexe de Witten -. Comm. in PDE, 10(3), p. 245-340 (1985). Zbl0597.35024MR780068
- F. Hérau and F. Nier. Isotropic hypoellipticity and trend to the equilibrium for the Fokker-Planck equation with high degree potential. Arch. Ration. Mech. Anal. 171, n 2, 151–218 (2004). Zbl1139.82323MR2034753
- R. Holley, S. Kusuoka, D. Stroock. Asymptotics of the spectral gap with applications to the theory of simulated annealing. J. Funct. Anal. 83, n 2, 333–347 (1989). Zbl0706.58075MR995752
- V.N. Kolokoltsov. Semi-classical analysis for diffusions and stochastic processes. Lecture Notes in Mathematics 1724. Springer Verlag, Berlin 2000. Zbl0951.60001MR1755149
- L. Miclo. Comportement de spectres d’opérateurs à basse température. Bull. Sci. Math. 119, p. 529-533 (1995). Zbl0840.60057MR1364276
- B. Simon. Trace ideals and their applications. Cambridge University Press IX, Lecture Notes Series vol. 35 (1979). Zbl0423.47001MR541149
- B. Simon. Semi-classical analysis of low lying eigenvalues, I.. Nondegenerate minima: Asymptotic expansions. Ann. Inst. Poincaré, 38, p. 296-307 (1983). Zbl0526.35027MR708966
- G. Schwarz. Hodge decomposition. A method for Solving Boundary Value Problems. Lect. Notes in Mathematics 1607, Springer (1995). Zbl0828.58002MR1367287
- E. Witten. Supersymmetry and Morse inequalities. J. Diff. Geom. 17, p. 661-692 (1982). Zbl0499.53056MR683171
- Weiping Zhang. Lectures on Chern-Weil theory and Witten deformations. Nankai Tracts in Mathematics. Vol. 4. World Scientific (2002). Zbl0993.58014MR1864735
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.