Non-solvable base change for Hilbert modular representations and zeta functions of twisted quaternionic Shimura varieties

Cristian Virdol[1]

  • [1] Department of Mathematics, Columbia University

Annales de la faculté des sciences de Toulouse Mathématiques (2010)

  • Volume: 19, Issue: 3-4, page 831-848
  • ISSN: 0240-2963

Abstract

top
In this paper we prove some non-solvable base change for Hilbert modular representations, and we use this result to show the meromorphic continuation to the entire complex plane of the zeta functions of some twisted quaternionic Shimura varieties. The zeta functions of the twisted quaternionic Shimura varieties are computed at all places.

How to cite

top

Virdol, Cristian. "Non-solvable base change for Hilbert modular representations and zeta functions of twisted quaternionic Shimura varieties." Annales de la faculté des sciences de Toulouse Mathématiques 19.3-4 (2010): 831-848. <http://eudml.org/doc/115884>.

@article{Virdol2010,
abstract = {In this paper we prove some non-solvable base change for Hilbert modular representations, and we use this result to show the meromorphic continuation to the entire complex plane of the zeta functions of some twisted quaternionic Shimura varieties. The zeta functions of the twisted quaternionic Shimura varieties are computed at all places.},
affiliation = {Department of Mathematics, Columbia University},
author = {Virdol, Cristian},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {quaternionic Shimura variety; zeta function},
language = {eng},
number = {3-4},
pages = {831-848},
publisher = {Université Paul Sabatier, Toulouse},
title = {Non-solvable base change for Hilbert modular representations and zeta functions of twisted quaternionic Shimura varieties},
url = {http://eudml.org/doc/115884},
volume = {19},
year = {2010},
}

TY - JOUR
AU - Virdol, Cristian
TI - Non-solvable base change for Hilbert modular representations and zeta functions of twisted quaternionic Shimura varieties
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2010
PB - Université Paul Sabatier, Toulouse
VL - 19
IS - 3-4
SP - 831
EP - 848
AB - In this paper we prove some non-solvable base change for Hilbert modular representations, and we use this result to show the meromorphic continuation to the entire complex plane of the zeta functions of some twisted quaternionic Shimura varieties. The zeta functions of the twisted quaternionic Shimura varieties are computed at all places.
LA - eng
KW - quaternionic Shimura variety; zeta function
UR - http://eudml.org/doc/115884
ER -

References

top
  1. Arthur (J.), Clozel (L.).— Simple algebras, base change and the advanced theory of the trace formula, Ann. of Math. Studies, Princeton University Press, (1989). Zbl0682.10022MR1007299
  2. Blasius (D.).— Hilbert modular forms and the Ramanujan conjecture, Noncommutative geometry and number theory, p. 35-56, Aspects Math., E37, Vieweg, Wiesbaden, (2006). Zbl1183.11023MR2327298
  3. Brylinski (J.L.), Labesse (J.P.).— Cohomologie d’intersection et fonctions L de certaines varietes de Shimura, Annales Scientifiques de l’Ecole Normale Superieure, 17, p. 361-412, (1984). Zbl0553.12005MR777375
  4. Blasius (D.), Rogawski (J.D.).— Zeta functions of Shimura varieties, Motives, AMS Proc. Symp. Pure Math. 55, Part 2. Zbl0827.11033MR1265563
  5. Carayol (H.).— Sur la mauvaise r e ´ duction des courbes de Shimura, Compositio Math., 59, nr.2, p. 151-230, (1986). Zbl0607.14021MR860139
  6. Dimitrov (M.).— Galois representations mod p and cohomology of Hilbert modular varieties, Ann. Sci. de l’Ecole Norm. Sup. 38, p. 505-551, (2005). Zbl1160.11325MR2172950
  7. Deligne (P.).— Travaux de Shimura, S e ´ m. Bourbaki F e ´ b. 71, Expos e ´ 389, Lectures Notes in Math. vol. 244. Berlin-heidelberg-New York; Springer (1971). Zbl0225.14007MR498581
  8. Gelbart (S.S.).— Automorphic forms on adeles groups, Ann. of Math. Studies, Princeton University Press, (1975). Zbl0329.10018MR379375
  9. Harris (M.), Shepherd-Barron (N.), Taylor (R.).— A family of Calabi-Yau varieties and potential automorphy, to appear in Ann. of Math. Zbl1263.11061MR2630056
  10. Langlands (R.P.).— Base change for GL 2 , Ann. of Math. Studies 96, Princeton University Press, (1980). Zbl0444.22007MR574808
  11. Reimann (H.).— The semi-simple zeta function of quaternionic Shimura varieties, Lecture Notes in Mathematics 1657, Springer, (1997). Zbl1009.11044MR1470457
  12. Ramakrishnan (D.).— Modularity of the Rankin-Selberg L-series, and multiplicity one for SL(2), Ann. of Math., 152, p. 45-111, (2000). Zbl0989.11023MR1792292
  13. Ramakrishnan (D.).— Modularity of solvable Artin representations of GO(4)-type, IMRN, No. 1, p. 1-54, (2002). Zbl1002.11045MR1874921
  14. Rogawski (J.D.), Tunnell (J.B.).— On Artin L-functions associated to Hilbert modular forms of weight one, Inv. Math., 74, p. 1-43, (1983). Zbl0523.12009MR722724
  15. Serre (J.-P.).— Linear representations of finite groups, Springer (1977). Zbl0355.20006MR450380
  16. Taylor (R.).— On Galois representations associated to Hilbert modular forms, Inv. Math., 98, p. 265-280, (1989). Zbl0705.11031MR1016264
  17. Taylor (R.).— On the meromorphic continuation of degree two L-functions, Documenta Mathematica, Extra Volume: John Coates’ Sixtieth Birthday, p. 729-779, (2006). Zbl1138.11051MR2290604
  18. Virdol (C.).— Zeta functions of twisted modular curves, J. Aust. Math. Soc. 80, p. 89-103, (2006). Zbl1165.11323MR2212318
  19. Virdol (C.).— Tate classes and poles of L -functions of twisted quaternionic Shimura surfaces, J. of Number Theory 123, Nr. 2, p. 315-328, (2007). Zbl1174.14021MR2300817
  20. Wiles (A.).— Modular elliptic curves and Fermat’s last theorem, Ann. of Math. 141, p. 443-551, (1995). Zbl0823.11029MR1333035

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.