Non-solvable base change for Hilbert modular representations and zeta functions of twisted quaternionic Shimura varieties
- [1] Department of Mathematics, Columbia University
Annales de la faculté des sciences de Toulouse Mathématiques (2010)
- Volume: 19, Issue: 3-4, page 831-848
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topVirdol, Cristian. "Non-solvable base change for Hilbert modular representations and zeta functions of twisted quaternionic Shimura varieties." Annales de la faculté des sciences de Toulouse Mathématiques 19.3-4 (2010): 831-848. <http://eudml.org/doc/115884>.
@article{Virdol2010,
abstract = {In this paper we prove some non-solvable base change for Hilbert modular representations, and we use this result to show the meromorphic continuation to the entire complex plane of the zeta functions of some twisted quaternionic Shimura varieties. The zeta functions of the twisted quaternionic Shimura varieties are computed at all places.},
affiliation = {Department of Mathematics, Columbia University},
author = {Virdol, Cristian},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {quaternionic Shimura variety; zeta function},
language = {eng},
number = {3-4},
pages = {831-848},
publisher = {Université Paul Sabatier, Toulouse},
title = {Non-solvable base change for Hilbert modular representations and zeta functions of twisted quaternionic Shimura varieties},
url = {http://eudml.org/doc/115884},
volume = {19},
year = {2010},
}
TY - JOUR
AU - Virdol, Cristian
TI - Non-solvable base change for Hilbert modular representations and zeta functions of twisted quaternionic Shimura varieties
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2010
PB - Université Paul Sabatier, Toulouse
VL - 19
IS - 3-4
SP - 831
EP - 848
AB - In this paper we prove some non-solvable base change for Hilbert modular representations, and we use this result to show the meromorphic continuation to the entire complex plane of the zeta functions of some twisted quaternionic Shimura varieties. The zeta functions of the twisted quaternionic Shimura varieties are computed at all places.
LA - eng
KW - quaternionic Shimura variety; zeta function
UR - http://eudml.org/doc/115884
ER -
References
top- Arthur (J.), Clozel (L.).— Simple algebras, base change and the advanced theory of the trace formula, Ann. of Math. Studies, Princeton University Press, (1989). Zbl0682.10022MR1007299
- Blasius (D.).— Hilbert modular forms and the Ramanujan conjecture, Noncommutative geometry and number theory, p. 35-56, Aspects Math., E37, Vieweg, Wiesbaden, (2006). Zbl1183.11023MR2327298
- Brylinski (J.L.), Labesse (J.P.).— Cohomologie d’intersection et fonctions L de certaines varietes de Shimura, Annales Scientifiques de l’Ecole Normale Superieure, 17, p. 361-412, (1984). Zbl0553.12005MR777375
- Blasius (D.), Rogawski (J.D.).— Zeta functions of Shimura varieties, Motives, AMS Proc. Symp. Pure Math. 55, Part 2. Zbl0827.11033MR1265563
- Carayol (H.).— Sur la mauvaise rduction des courbes de Shimura, Compositio Math., 59, nr.2, p. 151-230, (1986). Zbl0607.14021MR860139
- Dimitrov (M.).— Galois representations mod and cohomology of Hilbert modular varieties, Ann. Sci. de l’Ecole Norm. Sup. 38, p. 505-551, (2005). Zbl1160.11325MR2172950
- Deligne (P.).— Travaux de Shimura, Sm. Bourbaki Fb. 71, Expos 389, Lectures Notes in Math. vol. 244. Berlin-heidelberg-New York; Springer (1971). Zbl0225.14007MR498581
- Gelbart (S.S.).— Automorphic forms on adeles groups, Ann. of Math. Studies, Princeton University Press, (1975). Zbl0329.10018MR379375
- Harris (M.), Shepherd-Barron (N.), Taylor (R.).— A family of Calabi-Yau varieties and potential automorphy, to appear in Ann. of Math. Zbl1263.11061MR2630056
- Langlands (R.P.).— Base change for GL, Ann. of Math. Studies 96, Princeton University Press, (1980). Zbl0444.22007MR574808
- Reimann (H.).— The semi-simple zeta function of quaternionic Shimura varieties, Lecture Notes in Mathematics 1657, Springer, (1997). Zbl1009.11044MR1470457
- Ramakrishnan (D.).— Modularity of the Rankin-Selberg L-series, and multiplicity one for SL(2), Ann. of Math., 152, p. 45-111, (2000). Zbl0989.11023MR1792292
- Ramakrishnan (D.).— Modularity of solvable Artin representations of GO(4)-type, IMRN, No. 1, p. 1-54, (2002). Zbl1002.11045MR1874921
- Rogawski (J.D.), Tunnell (J.B.).— On Artin L-functions associated to Hilbert modular forms of weight one, Inv. Math., 74, p. 1-43, (1983). Zbl0523.12009MR722724
- Serre (J.-P.).— Linear representations of finite groups, Springer (1977). Zbl0355.20006MR450380
- Taylor (R.).— On Galois representations associated to Hilbert modular forms, Inv. Math., 98, p. 265-280, (1989). Zbl0705.11031MR1016264
- Taylor (R.).— On the meromorphic continuation of degree two L-functions, Documenta Mathematica, Extra Volume: John Coates’ Sixtieth Birthday, p. 729-779, (2006). Zbl1138.11051MR2290604
- Virdol (C.).— Zeta functions of twisted modular curves, J. Aust. Math. Soc. 80, p. 89-103, (2006). Zbl1165.11323MR2212318
- Virdol (C.).— Tate classes and poles of -functions of twisted quaternionic Shimura surfaces, J. of Number Theory 123, Nr. 2, p. 315-328, (2007). Zbl1174.14021MR2300817
- Wiles (A.).— Modular elliptic curves and Fermat’s last theorem, Ann. of Math. 141, p. 443-551, (1995). Zbl0823.11029MR1333035
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.