Galois representations modulo p and cohomology of Hilbert modular varieties

Mladen Dimitrov

Annales scientifiques de l'École Normale Supérieure (2005)

  • Volume: 38, Issue: 4, page 505-551
  • ISSN: 0012-9593

How to cite

top

Dimitrov, Mladen. "Galois representations modulo p and cohomology of Hilbert modular varieties." Annales scientifiques de l'École Normale Supérieure 38.4 (2005): 505-551. <http://eudml.org/doc/82667>.

@article{Dimitrov2005,
author = {Dimitrov, Mladen},
journal = {Annales scientifiques de l'École Normale Supérieure},
language = {eng},
number = {4},
pages = {505-551},
publisher = {Elsevier},
title = {Galois representations modulo p and cohomology of Hilbert modular varieties},
url = {http://eudml.org/doc/82667},
volume = {38},
year = {2005},
}

TY - JOUR
AU - Dimitrov, Mladen
TI - Galois representations modulo p and cohomology of Hilbert modular varieties
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2005
PB - Elsevier
VL - 38
IS - 4
SP - 505
EP - 551
LA - eng
UR - http://eudml.org/doc/82667
ER -

References

top
  1. [1] Blasius D., Rogawski J., Motives for Hilbert modular forms, Invent. Math.114 (1993) 55-87. Zbl0829.11028MR1235020
  2. [2] Breuil C., Une remarque sur les représentations locales p-adiques et les congruences entre formes modulaires de Hilbert, Bull. Soc. Math. France127 (1999) 459-472. Zbl0933.11028MR1724405
  3. [3] Brylinski J.-L., Labesse J.-P., Cohomologie d'intersection et fonctions L de certaines variétés de Shimura, Ann. Sci. École Norm. Sup.17 (1984) 361-412. Zbl0553.12005MR777375
  4. [4] Deligne P., Formes modulaires et représentations l-adiques, in: Séminaire Bourbaki, 355, Lecture Notes in Math., vol. 179, Springer, Berlin, 1971. Zbl0206.49901
  5. [5] Deligne P., La conjecture de Weil. I, Publ. Math. IHÉS43 (1974) 273-307. Zbl0287.14001MR340258
  6. [6] Deligne P., Valeurs de fonctions L et périodes d'intégrales, in: Proceedings of Symposia of Pure Mathematics, vol. 33, American Mathematical Society, Providence, RI, 1979, pp. 313-346. Zbl0449.10022MR546622
  7. [7] Deligne P., Serre J.-P., Formes modulaires de poids 1, Ann. Sci. École Norm. Sup.7 (1974) 507-530. Zbl0321.10026MR379379
  8. [8] Diamond F., On the Hecke action on the cohomology of Hilbert–Blumenthal surfaces, Contemp. Math.210 (1998) 71-83. Zbl0923.11074MR1478485
  9. [9] Diamond F., Flach M., Guo L., The Tamagawa number conjecture of adjoint motives of modular forms, Ann. Sci. École Norm. Sup.37 (2004) 663-727. Zbl1121.11045MR2103471
  10. [10] Dimitrov M., Compactifications arithmétiques des variétés de Hilbert et formes modulaires de Hilbert pour Γ 1 ( c , n ) , in: Adolphson A., Baldassarri F., Berthelot P., Katz N., Loeser F. (Eds.), Geometric Aspects of Dwork Theory, Walter de Gruyter, Berlin, 2004, pp. 527-554. Zbl1076.14029MR2099078
  11. [11] Dimitrov M., Tilouine J., Variétés et formes modulaires de Hilbert arithmétiques pour Γ 1 ( c , n ) , in: Adolphson A., Baldassarri F., Berthelot P., Katz N., Loeser F. (Eds.), Geometric Aspects of Dwork Theory, Walter de Gruyter, Berlin, 2004, pp. 555-614. Zbl1127.11036MR2099080
  12. [12] Dimitrov M., On Ihara's lemma for Hilbert modular varieties, math.NT/0503134. Zbl1256.11035
  13. [13] Faltings G., On the cohomology of locally symmetric Hermitian spaces, in: Séminaire d'algèbre, Lecture Notes in Math., vol. 1029, Springer, Berlin, 1983, pp. 349-366. Zbl0539.22008MR732471
  14. [14] Faltings G., Crystalline cohomology and p-adic Galois representations, in: Press J.H.U. (Ed.), Algebraic Analysis, Geometry, and Number Theory, 1989, pp. 25-80. Zbl0805.14008MR1463696
  15. [15] Faltings G., Chai C.-L., Degeneration of Abelian Varieties, Springer, Berlin, 1990. Zbl0744.14031MR1083353
  16. [16] Faltings G., Jordan B., Crystalline cohomology and GL ( 2 , Q ) , Israel J. Math.90 (1995) 1-66. Zbl0854.14010MR1336315
  17. [17] Fontaine J.-M., Laffaille G., Construction de représentations p-adiques, Ann. Sci. École Norm. Sup.15 (1982) 547-608. Zbl0579.14037MR707328
  18. [18] Ghate E., Adjoint L-values and primes of congruence for Hilbert modular forms, Compositio Math.132 (2002) 243-281. Zbl1004.11019MR1918132
  19. [19] Harder G., Eisenstein cohomology of arithmetic groups. The case GL 2 , Invent. Math.89 (1987) 37-118. Zbl0629.10023MR892187
  20. [20] Hida H., p-adic Automorphic Forms on Shimura Varieties, Springer, Berlin, 2004. Zbl1055.11032MR2055355
  21. [21] Hida H., Congruences of cusp forms and special values of their zeta functions, Invent. Math.63 (1981) 225-261. Zbl0459.10018MR610538
  22. [22] Hida H., On congruence divisors of cuspforms as factors of the special values of their zeta functions, Invent. Math.64 (1981) 221-262. Zbl0472.10028MR629471
  23. [23] Hida H., Nearly ordinary Hecke algebras and Galois representations of several variables, in: Algebraic Analysis, Geometry and Number Theory, Proceedings of the JAMI Inaugural Conference, 1988, pp. 115-134. Zbl0782.11017MR1463699
  24. [24] Hida H., On p-adic Hecke algebras for GL 2 over totally real fields, Ann. of Math.128 (1988) 295-384. Zbl0658.10034MR960949
  25. [25] Hida H., On the critical values of L-functions of GL 2 and GL 2 × GL 2 , Duke Math. J.74 (1994) 431-529. Zbl0838.11036MR1272981
  26. [26] Hida H., Tilouine J., Anti-cyclotomic Katz p-adic L-functions and congruence modules, Ann. Sci. École Norm. Sup.26 (1993) 189-259. Zbl0778.11061MR1209708
  27. [27] Illusie L., Réduction semi-stable et décomposition de complexes de de Rham à coefficients, Duke Math. J.60 (1990) 139-185. Zbl0708.14014MR1047120
  28. [28] Jantzen J., Representations of Algebraic Groups, Academic Press, New York, 1987. Zbl0654.20039MR899071
  29. [29] M. Kisin, K. Lai, Overconvergent Hilbert modular forms, Amer. J. Math., submitted for publication. Zbl1129.11020MR2154369
  30. [30] Mazur B., Modular curves and the Eisenstein ideal, Inst. Hautes Études Sci. Publ. Math.47 (1977) 33-186. Zbl0394.14008MR488287
  31. [31] Mokrane A., Tilouine J., Cohomology of Siegel varieties with p-adic integral coefficients and applications, in: Cohomology of Siegel Varieties, Astérisque, vol. 280, 2002, pp. 1-95. Zbl1078.11037MR1944174
  32. [32] Pink R., On l-adic sheaves on Shimura varieties and their higher images in the Baily–Borel compactification, Math. Ann.292 (1992) 197-240. Zbl0748.14008MR1149032
  33. [33] Polo P., Tilouine J., Bernstein–Gelfand–Gelfand complexes and cohomology of nilpotent groups over Z p for representations withp-small weights, in: Cohomology of Siegel Varieties, Astérisque, vol. 280, 2002, pp. 97-135. Zbl1035.17030MR1944175
  34. [34] Rapoport M., Compactification de l'espace de modules de Hilbert–Blumenthal, Compositio Math.36 (1978) 255-335. Zbl0386.14006MR515050
  35. [35] Ribet K., On l-adic representations attached to modular forms, Invent. Math.28 (1975) 245-275. Zbl0302.10027MR419358
  36. [36] Ribet K., Mod p Hecke operators and congruences between modular forms, Invent. Math.71 (1983) 193-205. Zbl0508.10018MR688264
  37. [37] Serre J.-P., Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math.15 (1972) 259-331. Zbl0235.14012MR387283
  38. [38] Shimura G., The special values of the zeta functions associated with Hilbert modular forms, Duke Math. J.45 (1978) 637-679. Zbl0394.10015MR507462
  39. [39] Steinberg R., Representations of algebraic groups, Nagoya Math. J.22 (1963) 33-56. Zbl0271.20019MR155937
  40. [40] Taylor R., On Galois representations associated to Hilbert modular forms, Invent. Math.98 (1989) 265-280. Zbl0705.11031MR1016264
  41. [41] Taylor R., On Galois representations associated to Hilbert modular forms II, in: Coates J., Yau S.-T. (Eds.), Elliptic Curves, Modular Forms and Fermat's Last Theorem, Hong Kong, 1993, International Press, 1995, pp. 185-191. Zbl0836.11017MR1363502
  42. [42] Wedhorn T., Congruence relations on some Shimura varieties, J. reine angew. Math.524 (2000) 43-71. Zbl1101.14033MR1770603
  43. [43] Wiles A., On ordinary λ-adic representations associated to modular forms, Invent. Math.94 (1988) 529-573. Zbl0664.10013
  44. [44] Yoshida H., On the zeta functions of Shimura varieties and periods of Hilbert modular forms, Duke Math. J.74 (1994) 121-191. Zbl0823.11018MR1284818

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.