A note on projective Levi flats and minimal sets of algebraic foliations
Annales de l'institut Fourier (1999)
- Volume: 49, Issue: 4, page 1369-1385
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topNeto, Alcides Lins. "A note on projective Levi flats and minimal sets of algebraic foliations." Annales de l'institut Fourier 49.4 (1999): 1369-1385. <http://eudml.org/doc/75385>.
@article{Neto1999,
abstract = {In this paper we prove that holomorphic codimension one singular foliations on $\{\Bbb C\}\{\Bbb P\}^n,\; n\ge 3$ have no non trivial minimal sets. We prove also that for $n\ge 3$, there is no real analytic Levi flat hypersurface in $\{\Bbb C\}\{\Bbb P\}^n$.},
author = {Neto, Alcides Lins},
journal = {Annales de l'institut Fourier},
keywords = {nontrivial minimal set; Levi flat; singular holomorphic foliation; nontrivial minimal sets; Levi flats},
language = {eng},
number = {4},
pages = {1369-1385},
publisher = {Association des Annales de l'Institut Fourier},
title = {A note on projective Levi flats and minimal sets of algebraic foliations},
url = {http://eudml.org/doc/75385},
volume = {49},
year = {1999},
}
TY - JOUR
AU - Neto, Alcides Lins
TI - A note on projective Levi flats and minimal sets of algebraic foliations
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 4
SP - 1369
EP - 1385
AB - In this paper we prove that holomorphic codimension one singular foliations on ${\Bbb C}{\Bbb P}^n,\; n\ge 3$ have no non trivial minimal sets. We prove also that for $n\ge 3$, there is no real analytic Levi flat hypersurface in ${\Bbb C}{\Bbb P}^n$.
LA - eng
KW - nontrivial minimal set; Levi flat; singular holomorphic foliation; nontrivial minimal sets; Levi flats
UR - http://eudml.org/doc/75385
ER -
References
top- [AL-N] A. LINS NETO, Algebraic solutions of polynomial differential equations and foliations in dimension two, Springer Lecture Notes, 1345 (1988), 192-232. Zbl0677.58036MR90c:58142
- [BB] P. BAUM, R. BOTT, On the zeroes of meromorphic vector fields, Essais en l'honneur de De Rham, (1970) 29-47. Zbl0193.52201MR41 #6248
- [CLS1] C. CAMACHO, A. LINS NETO and P. SAD, Minimal sets of foliations on complex projective spaces, Publ. Math. IHES, 68 (1988) 187-203. Zbl0682.57012MR90e:58129
- [CLS2] C. CAMACHO, A. LINS NETO and P. SAD, Foliations with algebraic limit sets, Ann. of Math., 135 (1992) 429-446. Zbl0769.57017MR93i:32035
- [E] G. ELENCWAJG, Pseudo-convexité locale dans les variétés Kahlériennes, Ann. Inst. Fourier, 25-2 (1975), 295-314. Zbl0278.32015MR52 #8501
- [G] M. GREENBERG, Lectures on Algebraic Topology, W. A. Benjamin inc., 1967. Zbl0169.54403MR35 #6137
- [H] M. HIRSH, Differential Topology, Springer Verlag, N.Y., 1976. Zbl0356.57001
- [Ha] A. HAEFLIGER, Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa, serie 3, vol. 16 (1962), 367-397. Zbl0122.40702MR32 #6487
- [HL] G. M. HENKIN and J. LEITERER, Theory of Functions on Complex Manifolds, Birkhäuser, 1984. Zbl0726.32001
- [M] J. MILNOR, Morse Theory, Annals of Mathematics Studies 51, Princeton University Press, 1963. Zbl0108.10401
- [MB] M. BRUNELLA, Some remarks on indices of holomorphic vector fields, Prépublication 97, Université de Bourgogne (1996). Zbl0912.32024
- [S] Y. T. SIU, Techniques of extension of analytic objects, Marcel Dekker Inc., New-York, 1974. Zbl0294.32007
- [Sm] S. SMALE, On gradient dynamical systems, Ann. of Math., 74 (1961). Zbl0136.43702
- [ST] Y.T. Siu and G. TRAUTMANN, Gap-sheaves and extension of coherent analytic subsheaves, Lect. Notes in Math., 172 (1971). Zbl0208.10403MR44 #4240
- [T] A. TAKEUCHI, Domaines pseudo-convexes sur les variétés Kahlériennes, Jour. Math. Kyoto University, 6-3 (1967), 323-357. Zbl0179.12203MR36 #426
- [To] G. TOMASSINI, Tracce delle funzioni olomorfe sulle sottovarietà analitiche reali d'una varietà complessa, Ann. Scuola Norm. Sup. Pisa, (1966), 31-43. Zbl0154.33501MR34 #6808
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.