A note on projective Levi flats and minimal sets of algebraic foliations

Alcides Lins Neto

Annales de l'institut Fourier (1999)

  • Volume: 49, Issue: 4, page 1369-1385
  • ISSN: 0373-0956

Abstract

top
In this paper we prove that holomorphic codimension one singular foliations on n , n 3 have no non trivial minimal sets. We prove also that for n 3 , there is no real analytic Levi flat hypersurface in n .

How to cite

top

Neto, Alcides Lins. "A note on projective Levi flats and minimal sets of algebraic foliations." Annales de l'institut Fourier 49.4 (1999): 1369-1385. <http://eudml.org/doc/75385>.

@article{Neto1999,
abstract = {In this paper we prove that holomorphic codimension one singular foliations on $\{\Bbb C\}\{\Bbb P\}^n,\; n\ge 3$ have no non trivial minimal sets. We prove also that for $n\ge 3$, there is no real analytic Levi flat hypersurface in $\{\Bbb C\}\{\Bbb P\}^n$.},
author = {Neto, Alcides Lins},
journal = {Annales de l'institut Fourier},
keywords = {nontrivial minimal set; Levi flat; singular holomorphic foliation; nontrivial minimal sets; Levi flats},
language = {eng},
number = {4},
pages = {1369-1385},
publisher = {Association des Annales de l'Institut Fourier},
title = {A note on projective Levi flats and minimal sets of algebraic foliations},
url = {http://eudml.org/doc/75385},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Neto, Alcides Lins
TI - A note on projective Levi flats and minimal sets of algebraic foliations
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 4
SP - 1369
EP - 1385
AB - In this paper we prove that holomorphic codimension one singular foliations on ${\Bbb C}{\Bbb P}^n,\; n\ge 3$ have no non trivial minimal sets. We prove also that for $n\ge 3$, there is no real analytic Levi flat hypersurface in ${\Bbb C}{\Bbb P}^n$.
LA - eng
KW - nontrivial minimal set; Levi flat; singular holomorphic foliation; nontrivial minimal sets; Levi flats
UR - http://eudml.org/doc/75385
ER -

References

top
  1. [AL-N] A. LINS NETO, Algebraic solutions of polynomial differential equations and foliations in dimension two, Springer Lecture Notes, 1345 (1988), 192-232. Zbl0677.58036MR90c:58142
  2. [BB] P. BAUM, R. BOTT, On the zeroes of meromorphic vector fields, Essais en l'honneur de De Rham, (1970) 29-47. Zbl0193.52201MR41 #6248
  3. [CLS1] C. CAMACHO, A. LINS NETO and P. SAD, Minimal sets of foliations on complex projective spaces, Publ. Math. IHES, 68 (1988) 187-203. Zbl0682.57012MR90e:58129
  4. [CLS2] C. CAMACHO, A. LINS NETO and P. SAD, Foliations with algebraic limit sets, Ann. of Math., 135 (1992) 429-446. Zbl0769.57017MR93i:32035
  5. [E] G. ELENCWAJG, Pseudo-convexité locale dans les variétés Kahlériennes, Ann. Inst. Fourier, 25-2 (1975), 295-314. Zbl0278.32015MR52 #8501
  6. [G] M. GREENBERG, Lectures on Algebraic Topology, W. A. Benjamin inc., 1967. Zbl0169.54403MR35 #6137
  7. [H] M. HIRSH, Differential Topology, Springer Verlag, N.Y., 1976. Zbl0356.57001
  8. [Ha] A. HAEFLIGER, Variétés feuilletées, Ann. Scuola Norm. Sup. Pisa, serie 3, vol. 16 (1962), 367-397. Zbl0122.40702MR32 #6487
  9. [HL] G. M. HENKIN and J. LEITERER, Theory of Functions on Complex Manifolds, Birkhäuser, 1984. Zbl0726.32001
  10. [M] J. MILNOR, Morse Theory, Annals of Mathematics Studies 51, Princeton University Press, 1963. Zbl0108.10401
  11. [MB] M. BRUNELLA, Some remarks on indices of holomorphic vector fields, Prépublication 97, Université de Bourgogne (1996). Zbl0912.32024
  12. [S] Y. T. SIU, Techniques of extension of analytic objects, Marcel Dekker Inc., New-York, 1974. Zbl0294.32007
  13. [Sm] S. SMALE, On gradient dynamical systems, Ann. of Math., 74 (1961). Zbl0136.43702
  14. [ST] Y.T. Siu and G. TRAUTMANN, Gap-sheaves and extension of coherent analytic subsheaves, Lect. Notes in Math., 172 (1971). Zbl0208.10403MR44 #4240
  15. [T] A. TAKEUCHI, Domaines pseudo-convexes sur les variétés Kahlériennes, Jour. Math. Kyoto University, 6-3 (1967), 323-357. Zbl0179.12203MR36 #426
  16. [To] G. TOMASSINI, Tracce delle funzioni olomorfe sulle sottovarietà analitiche reali d'una varietà complessa, Ann. Scuola Norm. Sup. Pisa, (1966), 31-43. Zbl0154.33501MR34 #6808

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.