An -algebra approach to Artin’s solution of Hilbert’s Seventeenth Problem
- [1] The University of Toledo Toledo, Ohio, U.S.A.
Annales de la faculté des sciences de Toulouse Mathématiques (2010)
- Volume: 19, Issue: S1, page 215-220
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topSteinberg, Stuart A.. "An $\ell $-algebra approach to Artin’s solution of Hilbert’s Seventeenth Problem." Annales de la faculté des sciences de Toulouse Mathématiques 19.S1 (2010): 215-220. <http://eudml.org/doc/115898>.
@article{Steinberg2010,
abstract = {Using lattice-ordered algebras it is shown that a totally ordered field which has a unique total order and is dense in its real closure has the property that each of its positive semidefinite rational functions is a sum of squares.},
affiliation = {The University of Toledo Toledo, Ohio, U.S.A.},
author = {Steinberg, Stuart A.},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {lattice-ordered algebra; Hilbert's seventeenth problem},
language = {eng},
month = {4},
number = {S1},
pages = {215-220},
publisher = {Université Paul Sabatier, Toulouse},
title = {An $\ell $-algebra approach to Artin’s solution of Hilbert’s Seventeenth Problem},
url = {http://eudml.org/doc/115898},
volume = {19},
year = {2010},
}
TY - JOUR
AU - Steinberg, Stuart A.
TI - An $\ell $-algebra approach to Artin’s solution of Hilbert’s Seventeenth Problem
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2010/4//
PB - Université Paul Sabatier, Toulouse
VL - 19
IS - S1
SP - 215
EP - 220
AB - Using lattice-ordered algebras it is shown that a totally ordered field which has a unique total order and is dense in its real closure has the property that each of its positive semidefinite rational functions is a sum of squares.
LA - eng
KW - lattice-ordered algebra; Hilbert's seventeenth problem
UR - http://eudml.org/doc/115898
ER -
References
top- E. Artin, Über die Zerlegung definiter Funktionen in Quadrate, Hamb. Abh., 5 (1927), 100–115. Zbl52.0122.01
- P. M. Cohn, Universal algebra, Revised edition, Reidel, Dordrecht, 1981. Zbl0461.08001MR620952
- P. Erdos, L. Gillman and M. Henriksen, An isomorphism theorem for real-closed fields, Ann. of Math., 61 (1955), 542–554. Zbl0065.02305MR69161
- L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, Princeton, 1960. Zbl0093.30001MR116199
- L. Henkin, Sums of squares, in Summaries of Talks, Summer Institute of Symbolic Logic in 1957 at Cornell University, Institute for Defense Analyses, Princeton, 1960, 284–291. Zbl0201.33201
- M. Henricksen and J. R. Isbell, Lattice-ordered rings and function rings, Pacific J. Math., 12 (1962), 533–565. Zbl0111.04302MR153709
- N. Jacobson, Lectures in abstract algebra, Volume III - Theory of fields and Galois Theory, Van Nostrand, Princeton, 1964. Zbl0124.27002MR172871
- N. Jacobson, Basic algebra II, Freeman, San Francisco, 1980. Zbl0441.16001MR571884
- S. Lang, The theory of real places, Ann. Math.57 (1953), 378–391. Zbl0052.03301MR53924
- S. Lang and J. T. Tate, The collected papers of Emil Artin, Addison-Wesley, Reading, 1965. Zbl0146.00101MR176888
- K. McKenna, New facts about Hilbert’s seventeenth problem, Lecture Notes in Mathematics 498, Model theory and algebra, A memorial tribute to Abraham Robinson, 1975, 220–230. Zbl0357.12019MR401720
- A. Pfister, Hilbert’s seventeenth problem and related problems on definite forms, Mathematical developments arising from Hilbert problems, Proceedings of symposia in pure mathematics 28, part 2, Amer. Math. Soc., Providence, 1976, 483–489. Zbl0337.12101MR424679
- A. Prestel and C. N. Delzell, Positive polynomials, Springer, Berlin, 2001. Zbl0987.13016MR1829790
- E. C. Weinberg, Lectures on ordered groups and rings, University of Illinois, Urbana, 1968.
- E. C. Weinberg, University of Illinois seminar, 1971.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.