Arens regularity of lattice-ordered rings

Karim Boulabiar[1]; Jamel Jabeur[2]

  • [1] Département du Cycle Agrégatif IPEST, Université du 7 Novembre à Carthage BP 51, 2070-La Marsa, Tunisia
  • [2] Département du Cycle Préparatoire IPEST, Université du 7 Novembre à Carthage BP 51, 2070-La Marsa, Tunisia

Annales de la faculté des sciences de Toulouse Mathématiques (2010)

  • Volume: 19, Issue: S1, page 25-36
  • ISSN: 0240-2963

Abstract

top
This work discusses the problem of Arens regularity of a lattice-ordered ring. In this prospect, a counterexample is furnished to show that without extra conditions, a lattice-ordered ring need not be Arens regular. However, as shown in this paper, it turns out that any f -ring in the sense of Birkhoff and Pierce is Arens regular. This result is then used and extended to the more general setting of almost f -rings introduced again by Birkhoff.

How to cite

top

Boulabiar, Karim, and Jabeur, Jamel. "Arens regularity of lattice-ordered rings." Annales de la faculté des sciences de Toulouse Mathématiques 19.S1 (2010): 25-36. <http://eudml.org/doc/115900>.

@article{Boulabiar2010,
abstract = {This work discusses the problem of Arens regularity of a lattice-ordered ring. In this prospect, a counterexample is furnished to show that without extra conditions, a lattice-ordered ring need not be Arens regular. However, as shown in this paper, it turns out that any $f$-ring in the sense of Birkhoff and Pierce is Arens regular. This result is then used and extended to the more general setting of almost $f$-rings introduced again by Birkhoff.},
affiliation = {Département du Cycle Agrégatif IPEST, Université du 7 Novembre à Carthage BP 51, 2070-La Marsa, Tunisia; Département du Cycle Préparatoire IPEST, Université du 7 Novembre à Carthage BP 51, 2070-La Marsa, Tunisia},
author = {Boulabiar, Karim, Jabeur, Jamel},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {almost -ring; Arens regular ring; unital -ring; lattice-ordered ring},
language = {eng},
month = {4},
number = {S1},
pages = {25-36},
publisher = {Université Paul Sabatier, Toulouse},
title = {Arens regularity of lattice-ordered rings},
url = {http://eudml.org/doc/115900},
volume = {19},
year = {2010},
}

TY - JOUR
AU - Boulabiar, Karim
AU - Jabeur, Jamel
TI - Arens regularity of lattice-ordered rings
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2010/4//
PB - Université Paul Sabatier, Toulouse
VL - 19
IS - S1
SP - 25
EP - 36
AB - This work discusses the problem of Arens regularity of a lattice-ordered ring. In this prospect, a counterexample is furnished to show that without extra conditions, a lattice-ordered ring need not be Arens regular. However, as shown in this paper, it turns out that any $f$-ring in the sense of Birkhoff and Pierce is Arens regular. This result is then used and extended to the more general setting of almost $f$-rings introduced again by Birkhoff.
LA - eng
KW - almost -ring; Arens regular ring; unital -ring; lattice-ordered ring
UR - http://eudml.org/doc/115900
ER -

References

top
  1. C. D. Aliprantis, and O. Burkinshaw, Positive operators, Academic Press, Orlando, 1985 Zbl0608.47039MR809372
  2. R. Arens, The adjoint of bilinear operation, Proc. Amer. Math. Soc., 2 ( 1951 ), 839 - 848 Zbl0044.32601MR45941
  3. A. Bigard, K. Keimel, and S. Wolfenstein, Groupes et Anneaux Réticulés, Lecture Notes Math. 608 , Springer Verlag, Berlin-Heidelberg-New York, 1977 Zbl0384.06022MR552653
  4. G. Birkhoff, Lattice Theory, 3rd. edition Am. Math. Soc. Colloq. Publ. No. 25 , Providence, Rhode Island, 1967 MR227053
  5. G. Birkhoff and R. S. Pierce, Lattice-ordered rings, An. Acad. Brasil. Ciènc. 28 ( 1956 ), 41 - 69 Zbl0070.26602MR80099
  6. K. Boulabiar, Representation theorems for d -multiplications on Archimedean unital f -rings, Comm. Algebra, 32 ( 2004 ), 3955 - 3967 Zbl1060.06023MR2097440
  7. K. Boulabiar and J. Jabeur, Arens regularity of lattice-ordered rings, Ann. Fac. Sci. Toulouse, Math., To appear. Zbl1210.06010
  8. G. Buskes and R. Page, A positive note on a couterexample by Arens, Quaest. Math., 28 ( 2005 ), 117 - 121 Zbl1080.47003MR2136186
  9. P. Conrad, The additive group of an f -ring, Canad. J. Math., 26 ( 1974 ), 1157 - 1168 Zbl0293.06019MR354487
  10. C. B. Huijsmans and B. de Pagter, The order bidual of lattice ordered algebras, J. Funct. Anal., 59 ( 1984 ), 41 - 64 Zbl0549.46006MR763776

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.