Real holomorphy rings and the complete real spectrum

D. Gondard[1]; M. Marshall[2]

  • [1] Institut de Mathématiques de Jussieu, Université Paris 6, 4 Place Jussieu, 75252 Paris Cedex 05, France
  • [2] Department of Mathematics & Statistics, University of Saskatchewan, 106 Wiggins Road, Saskatoon, SK Canada, S7N 5E6

Annales de la faculté des sciences de Toulouse Mathématiques (2010)

  • Volume: 19, Issue: S1, page 57-74
  • ISSN: 0240-2963

Abstract

top
The complete real spectrum of a commutative ring A with 1 is introduced. Points of the complete real spectrum Sper c A are triples α = ( 𝔭 , v , P ) , where 𝔭 is a real prime of A , v is a real valuation of the field k ( 𝔭 ) : = qf ( A / 𝔭 ) and P is an ordering of the residue field of v . Sper c A is shown to have the structure of a spectral space in the sense of Hochster [5]. The specialization relation on Sper c A is considered. Special attention is paid to the case where the ring A in question is a real holomorphy ring.

How to cite

top

Gondard, D., and Marshall, M.. "Real holomorphy rings and the complete real spectrum." Annales de la faculté des sciences de Toulouse Mathématiques 19.S1 (2010): 57-74. <http://eudml.org/doc/115903>.

@article{Gondard2010,
abstract = {The complete real spectrum of a commutative ring $A$ with $1$ is introduced. Points of the complete real spectrum $\operatorname\{Sper\}^c A$ are triples $\alpha = (\mathfrak\{p\},v,P)$, where $\mathfrak\{p\}$ is a real prime of $A$, $v$ is a real valuation of the field $k(\mathfrak\{p\}) := \operatorname\{qf\}(A/\mathfrak\{p\})$ and $P$ is an ordering of the residue field of $v$. $\operatorname\{Sper\}^c A$ is shown to have the structure of a spectral space in the sense of Hochster [5]. The specialization relation on $\operatorname\{Sper\}^c A$ is considered. Special attention is paid to the case where the ring $A$ in question is a real holomorphy ring.},
affiliation = {Institut de Mathématiques de Jussieu, Université Paris 6, 4 Place Jussieu, 75252 Paris Cedex 05, France; Department of Mathematics & Statistics, University of Saskatchewan, 106 Wiggins Road, Saskatoon, SK Canada, S7N 5E6},
author = {Gondard, D., Marshall, M.},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
language = {eng},
month = {4},
number = {S1},
pages = {57-74},
publisher = {Université Paul Sabatier, Toulouse},
title = {Real holomorphy rings and the complete real spectrum},
url = {http://eudml.org/doc/115903},
volume = {19},
year = {2010},
}

TY - JOUR
AU - Gondard, D.
AU - Marshall, M.
TI - Real holomorphy rings and the complete real spectrum
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2010/4//
PB - Université Paul Sabatier, Toulouse
VL - 19
IS - S1
SP - 57
EP - 74
AB - The complete real spectrum of a commutative ring $A$ with $1$ is introduced. Points of the complete real spectrum $\operatorname{Sper}^c A$ are triples $\alpha = (\mathfrak{p},v,P)$, where $\mathfrak{p}$ is a real prime of $A$, $v$ is a real valuation of the field $k(\mathfrak{p}) := \operatorname{qf}(A/\mathfrak{p})$ and $P$ is an ordering of the residue field of $v$. $\operatorname{Sper}^c A$ is shown to have the structure of a spectral space in the sense of Hochster [5]. The specialization relation on $\operatorname{Sper}^c A$ is considered. Special attention is paid to the case where the ring $A$ in question is a real holomorphy ring.
LA - eng
UR - http://eudml.org/doc/115903
ER -

References

top
  1. C. Andradas, L. Bröcker, J. Ruiz, Constructible sets in real geometry, Springer 1996 Zbl0873.14044MR1393194
  2. E. Becker, D. Gondard, On the space of real places of a formally real field, Real analytic and algebraic geometry, Walter de Gruyter (1995), 21–46 Zbl0869.12002MR1320309
  3. E. Becker, V. Powers, Sums of powers in rings and the real holomorphy ring, J. reine angew. Math. 480 (1996), 71–103 Zbl0922.12003MR1420558
  4. J. Bochnak, M. Coste, M.-F. Roy, Géométrie algébrique réelle, Ergeb. Math. Springer 1987 Zbl0633.14016MR949442
  5. M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc. 142 (1969), 43–60 Zbl0184.29401MR251026
  6. R. Huber, Bewertungsspektrum und rigide geometrie, Regensburger Math. Schriften 23 1993 Zbl0806.13001MR1255978
  7. R. Huber, M. Knebusch, On valuation spectra, Contemporary Math. 155 (1994), 167–206 Zbl0799.13002MR1260707
  8. M. Knebusch, D. Zhang, Manis valuations and Prüfer extensions I, Springer 2002 Zbl1033.13001MR1937245
  9. T.-Y. Lam, An introduction to real algebra, Rky. Mtn. J. Math. 14 (1984), 767–814 Zbl0577.14016MR773114
  10. M. Marshall, Spaces of orderings and abstract real spectra, Lecture Notes in Mathematics 1636, Springer 1996 Zbl0866.12001MR1438785
  11. M. Marshall, A real holomorphy ring without the Schmüdgen property, Canad. Math. Bull. 42 (1999), 354–358 Zbl0971.12002MR1703695
  12. M. Marshall, Real reduced multirings and multifields J. Pure and Applied Algebra 205 (2006), 452–468 Zbl1089.14009MR2203627
  13. M.J. de la Puente, Riemann surfaces of a ring and compactifications of semi-algebraic sets, Doctoral Dissertation, Stanford 1988 
  14. M.J. de la Puente, Specializations and a local homomorphism theorem for real Riemann surfaces of rings, Pac. J. Math. 176 (1996), 427–442 Zbl0868.13004MR1435000
  15. K. Schmüdgen, The K –moment problem for compact semi-algebraic sets, Math. Ann. 289 (1991), 203–206 Zbl0744.44008MR1092173
  16. H. Schülting, On real places of a field and the real holomorphy ring, Comm. Alg. 10 (1982), 1239–1284 Zbl0509.14026MR660344
  17. M. Schweighofer, Iterated rings of bounded elements and generalizations of Schmüdgen’s Positivstellensatz, J. reine angew. Math. 554 (2003), 19–45 Zbl1096.13032MR1952167

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.