Levi-flat invariant sets of holomorphic symplectic mappings

Xianghong Gong[1]

  • [1] University of Wisconsin-Madison, Department of Mathematics, Van Vleck Hall, 480 Lincoln Drive, Madison WI 53706-1388 (USA)

Annales de l’institut Fourier (2001)

  • Volume: 51, Issue: 1, page 151-208
  • ISSN: 0373-0956

Abstract

top
We classify four families of Levi-flat sets which are defined by quadratic polynomials and invariant under certain linear holomorphic symplectic maps. The normalization of Levi- flat real analytic sets is studied through the technique of Segre varieties. The main purpose of this paper is to apply the Levi-flat sets to the study of convergence of Birkhoff's normalization for holomorphic symplectic maps. We also establish some relationships between Levi-flat invariant sets and first-integrals or meromorphic eigenfunctions of such maps. The results obtained for holomorphic symplectic maps are also applicable to holomorphic Hamiltonian systems via time-one maps.

How to cite

top

Gong, Xianghong. "Levi-flat invariant sets of holomorphic symplectic mappings." Annales de l’institut Fourier 51.1 (2001): 151-208. <http://eudml.org/doc/115907>.

@article{Gong2001,
abstract = {We classify four families of Levi-flat sets which are defined by quadratic polynomials and invariant under certain linear holomorphic symplectic maps. The normalization of Levi- flat real analytic sets is studied through the technique of Segre varieties. The main purpose of this paper is to apply the Levi-flat sets to the study of convergence of Birkhoff's normalization for holomorphic symplectic maps. We also establish some relationships between Levi-flat invariant sets and first-integrals or meromorphic eigenfunctions of such maps. The results obtained for holomorphic symplectic maps are also applicable to holomorphic Hamiltonian systems via time-one maps.},
affiliation = {University of Wisconsin-Madison, Department of Mathematics, Van Vleck Hall, 480 Lincoln Drive, Madison WI 53706-1388 (USA)},
author = {Gong, Xianghong},
journal = {Annales de l’institut Fourier},
keywords = {Levi-flat set; Segre variety; holomorphic symplectic map; Birkhoff normal form; Levi-flat},
language = {eng},
number = {1},
pages = {151-208},
publisher = {Association des Annales de l'Institut Fourier},
title = {Levi-flat invariant sets of holomorphic symplectic mappings},
url = {http://eudml.org/doc/115907},
volume = {51},
year = {2001},
}

TY - JOUR
AU - Gong, Xianghong
TI - Levi-flat invariant sets of holomorphic symplectic mappings
JO - Annales de l’institut Fourier
PY - 2001
PB - Association des Annales de l'Institut Fourier
VL - 51
IS - 1
SP - 151
EP - 208
AB - We classify four families of Levi-flat sets which are defined by quadratic polynomials and invariant under certain linear holomorphic symplectic maps. The normalization of Levi- flat real analytic sets is studied through the technique of Segre varieties. The main purpose of this paper is to apply the Levi-flat sets to the study of convergence of Birkhoff's normalization for holomorphic symplectic maps. We also establish some relationships between Levi-flat invariant sets and first-integrals or meromorphic eigenfunctions of such maps. The results obtained for holomorphic symplectic maps are also applicable to holomorphic Hamiltonian systems via time-one maps.
LA - eng
KW - Levi-flat set; Segre variety; holomorphic symplectic map; Birkhoff normal form; Levi-flat
UR - http://eudml.org/doc/115907
ER -

References

top
  1. M. Artin, On the solutions of analytic equations, Invent. Math. 5 (1968), 277-291 Zbl0172.05301MR232018
  2. E. Bedford, Holomorphic continuation of smooth functions over Levi-flat hypersurfaces, Trans. Amer. Math. Soc. 232 (1977), 323-341 Zbl0382.32009MR481100
  3. G.D. Birkhoff, Surface transformations and their dynamical applications, Acta Math. 43 (1920), 1-119 Zbl47.0985.03
  4. G.D. Birkhoff, Dynamical Systems, Coll. Publ. 1927 vol. 9 (1966 (reprinted)), AMS Zbl0171.05402
  5. F. Bruhat, H. Cartan, Sur la structure des sous-ensembles analytiques réels, C. R. Acad. Sci. Paris 244 (1957), 988-991 Zbl0081.17201MR86108
  6. D. Burns, X. Gong, Singular Levi-flat real analytic hypersurfaces, Amer. J. Math. 121 (1999), 23-53 Zbl0931.32009MR1704996
  7. H. Cartan, Variétés analytiques réelles et variétés analytiques complexes, Bull. Soc. Math. France 85 (1957), 77-99 Zbl0083.30502MR94830
  8. K. Diederich, J.E. Fornaess, Pseudoconvex domains with real-analytic boundary, Ann. Math. (2) 107 (1978), 371-384 Zbl0378.32014MR477153
  9. L.H. Eliasson, Normal forms for Hamiltonian systems with Poisson commuting integrals--elliptic case, Comment. Math. Helv. 65 (1990), 4-35 Zbl0702.58024MR1036125
  10. H. Ito, Convergence of Birkhoff normal forms for integrable systems, Comment. Math. Helv. 64 (1989), 412-461 Zbl0686.58021MR998858
  11. J.K. Moser, The analytic invariants of an area-preserving mapping near a hyperbolic fixed point, Comm. Pure Appl. Math. 9 (1956), 673-692 Zbl0072.40801MR86981
  12. H. Rüssmann, Über die Existenz einer Normalform inhaltstreuer elliptischer Transformationen, Math. Ann. 137 (1959), 64-77 Zbl0084.19904MR100064
  13. H. Rüssmann, Über das Verhalten analytischer Hamiltonscher Differentialgleichungen in der Nähe einer Gleichgewichtslösung, Math. Ann. 154 (1964), 285-300 Zbl0124.04701MR179409
  14. H. Rüssmann, Über die Normalform analytischer Hamiltonscher Differentialgleichungen in der Nähe einer Gleichgewichtslösung, Math. Ann. 169 (1967), 55-72 Zbl0143.10801MR213679
  15. B. Segre, Intorno al problem di Poincaré della rappresentazione pseudo-conform, Rend. Acc. Lincei 13 (1931), 676-683 Zbl0003.21302
  16. C.L. Siegel, On integrals of canonical systems, Ann. Math. 42 (1941), 806-822 Zbl0025.26503MR5818
  17. C.L. Siegel, Über die Existenz einer Normalform analytischer Hamiltonscher Differntialgleichungen in der Nähe einer Gleichgewichtslösung, Math. Ann. 128 (1954), 144-170 Zbl0057.32002MR67298
  18. J. Vey, Sur certains systèmes dynamiques séparables, Amer. J. Math. 100 (1978), 591-614 Zbl0384.58012MR501141
  19. S.M. Webster, On the mapping problem for algebraic real hypersurfaces, Invent. Math. 43 (1977), 53-68 Zbl0348.32005MR463482

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.