Normal forms for Hamiltonian systems with Poisson commuting integrals - elliptic case.
Commentarii mathematici Helvetici (1990)
- Volume: 65, Issue: 1, page 4-35
- ISSN: 0010-2571; 1420-8946/e
Access Full Article
topHow to cite
topEliasson, L.H.. "Normal forms for Hamiltonian systems with Poisson commuting integrals - elliptic case.." Commentarii mathematici Helvetici 65.1 (1990): 4-35. <http://eudml.org/doc/140179>.
@article{Eliasson1990,
author = {Eliasson, L.H.},
journal = {Commentarii mathematici Helvetici},
keywords = {Cartan subalgebras; normal forms of Hamiltonian systems},
number = {1},
pages = {4-35},
title = {Normal forms for Hamiltonian systems with Poisson commuting integrals - elliptic case.},
url = {http://eudml.org/doc/140179},
volume = {65},
year = {1990},
}
TY - JOUR
AU - Eliasson, L.H.
TI - Normal forms for Hamiltonian systems with Poisson commuting integrals - elliptic case.
JO - Commentarii mathematici Helvetici
PY - 1990
VL - 65
IS - 1
SP - 4
EP - 35
KW - Cartan subalgebras; normal forms of Hamiltonian systems
UR - http://eudml.org/doc/140179
ER -
Citations in EuDML Documents
top- Mark D. Hamilton, Eva Miranda, Geometric quantization of integrable systems with hyperbolic singularities
- Sergei Kuksin, Galina Perelman, A Vey theorem for nonlinear PDE
- Thomas Kappeler, Yuji Kodama, Andras Némethi, On the Birkhoff normal form of a completely integrable hamiltonian system near a fixed point with resonance
- Nguyen Tien Zung, Symplectic topology of integrable hamiltonian systems, I : Arnold-Liouville with singularities
- Eva Miranda, Nguyen Tien Zung, Equivariant normal form for nondegenerate singular orbits of integrable hamiltonian systems
- Xianghong Gong, Levi-flat invariant sets of holomorphic symplectic mappings
- Eva Miranda, Integrable systems and group actions
- Laurent Charles, Álvaro Pelayo, San Vũ Ngoc, Isospectrality for quantum toric integrable systems
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.