Singularities of k-tuples of vector fields
Bronisław Jakubczyk; Feliks Przytycki
- Publisher: Instytut Matematyczny Polskiej Akademi Nauk(Warszawa), 1984
Access Full Book
topAbstract
topHow to cite
topBronisław Jakubczyk, and Feliks Przytycki. Singularities of k-tuples of vector fields. Warszawa: Instytut Matematyczny Polskiej Akademi Nauk, 1984. <http://eudml.org/doc/268339>.
@book{BronisławJakubczyk1984,
abstract = {CONTENTSIntroduction............................................................................51. The main ideas and results................................................62. $H^\{n,k\}$-invariant subsets of $ℋ^\{n,k\}$.........................223. Reduction to germs of differential 1-forms........................354. The case k ≥ 2n-3. Proof of Theorem A...........................445. The case n = 3, k = 2.......................................................46Appendix. Connections with control theory...........................59List of symbols......................................................................61References..........................................................................63References to the Appendix.................................................63},
author = {Bronisław Jakubczyk, Feliks Przytycki},
keywords = {singularities; Martinet conjecture; control theory; k-tuples of -vector fields},
language = {eng},
location = {Warszawa},
publisher = {Instytut Matematyczny Polskiej Akademi Nauk},
title = {Singularities of k-tuples of vector fields},
url = {http://eudml.org/doc/268339},
year = {1984},
}
TY - BOOK
AU - Bronisław Jakubczyk
AU - Feliks Przytycki
TI - Singularities of k-tuples of vector fields
PY - 1984
CY - Warszawa
PB - Instytut Matematyczny Polskiej Akademi Nauk
AB - CONTENTSIntroduction............................................................................51. The main ideas and results................................................62. $H^{n,k}$-invariant subsets of $ℋ^{n,k}$.........................223. Reduction to germs of differential 1-forms........................354. The case k ≥ 2n-3. Proof of Theorem A...........................445. The case n = 3, k = 2.......................................................46Appendix. Connections with control theory...........................59List of symbols......................................................................61References..........................................................................63References to the Appendix.................................................63
LA - eng
KW - singularities; Martinet conjecture; control theory; k-tuples of -vector fields
UR - http://eudml.org/doc/268339
ER -
Citations in EuDML Documents
top- B. Jakubczyk, W. Kryński, F. Pelletier, Characteristic vector fields of generic distributions of corank 2
- Bronislaw Jakubczyk, Michail Zhitomirskii, Local reduction theorems and invariants for singular contact structures
- William Pasillas-Lépine, Witold Respondek, On the Geometry of Goursat Structures
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.