On the embedding of 1-convex manifolds with 1-dimensional exceptional set

Lucia Alessandrini[1]; Giovanni Bassanelli[1]

  • [1] Università di Parma, Dipartimento di Matematica, Via Massimo d'Azeglio 85/A, 43100 Parma (Italie)

Annales de l’institut Fourier (2001)

  • Volume: 51, Issue: 1, page 99-108
  • ISSN: 0373-0956

Abstract

top
In this paper we show that a 1-convex (i.e., strongly pseudoconvex) manifold X , with 1- dimensional exceptional set S and finitely generated second homology group H 2 ( X , ) , is embeddable in m × n if and only if X is Kähler, and this case occurs only when S does not contain any effective curve which is a boundary.

How to cite

top

Alessandrini, Lucia, and Bassanelli, Giovanni. "On the embedding of 1-convex manifolds with 1-dimensional exceptional set." Annales de l’institut Fourier 51.1 (2001): 99-108. <http://eudml.org/doc/115916>.

@article{Alessandrini2001,
abstract = {In this paper we show that a 1-convex (i.e., strongly pseudoconvex) manifold $X$, with 1- dimensional exceptional set $S$ and finitely generated second homology group $H_2(X,\{\mathbb \{Z\}\})$, is embeddable in $\{\mathbb \{C\}\}^m\times \{\mathbb \{C\}\}\{\mathbb \{P\}\}_n$ if and only if $X$ is Kähler, and this case occurs only when $S$ does not contain any effective curve which is a boundary.},
affiliation = {Università di Parma, Dipartimento di Matematica, Via Massimo d'Azeglio 85/A, 43100 Parma (Italie); Università di Parma, Dipartimento di Matematica, Via Massimo d'Azeglio 85/A, 43100 Parma (Italie)},
author = {Alessandrini, Lucia, Bassanelli, Giovanni},
journal = {Annales de l’institut Fourier},
keywords = {1-convex manifolds; Kähler manifolds; strongly pseudoconvex complex space; 1-convex complex space; 1-convex complex manifold; strongly pseudoconvex complex manifold; Kähler manifold; exceptional set; embedding theorem},
language = {eng},
number = {1},
pages = {99-108},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the embedding of 1-convex manifolds with 1-dimensional exceptional set},
url = {http://eudml.org/doc/115916},
volume = {51},
year = {2001},
}

TY - JOUR
AU - Alessandrini, Lucia
AU - Bassanelli, Giovanni
TI - On the embedding of 1-convex manifolds with 1-dimensional exceptional set
JO - Annales de l’institut Fourier
PY - 2001
PB - Association des Annales de l'Institut Fourier
VL - 51
IS - 1
SP - 99
EP - 108
AB - In this paper we show that a 1-convex (i.e., strongly pseudoconvex) manifold $X$, with 1- dimensional exceptional set $S$ and finitely generated second homology group $H_2(X,{\mathbb {Z}})$, is embeddable in ${\mathbb {C}}^m\times {\mathbb {C}}{\mathbb {P}}_n$ if and only if $X$ is Kähler, and this case occurs only when $S$ does not contain any effective curve which is a boundary.
LA - eng
KW - 1-convex manifolds; Kähler manifolds; strongly pseudoconvex complex space; 1-convex complex space; 1-convex complex manifold; strongly pseudoconvex complex manifold; Kähler manifold; exceptional set; embedding theorem
UR - http://eudml.org/doc/115916
ER -

References

top
  1. L. Alessandrini, G. Bassanelli, Metric properties of manifolds bimeromorphic to compact Kähler spaces, J. Differential Geom. 37 (1993), 95-121 Zbl0793.53068MR1198601
  2. C. Banica, Sur les fibres infinitésimales d'un morphisme propre d'espaces complexes, Sém. F. Norguet, Fonctions de plusieurs variables complexes IV 807 (1980), Springer Zbl0445.32019
  3. G. Bassanelli, A cut-off theorem for plurisubharmonic currents, Forum Math. 6 (1994), 567-595 Zbl0808.32010MR1295153
  4. M. Coltoiu, On the embedding of 1-convex manifolds with 1-dimensional exceptional set, Comment. Math. Helv. 60 (1985), 458-465 Zbl0583.32047MR814151
  5. M. Coltoiu, On 1-convex manifolds with 1-dimensional exceptional set (Collection of papers in memory of Martin Jurchescu), Rev. Roum. Math. Pures Appl. 43 (1998), 97-104 Zbl0932.32018MR1655264
  6. M. Coltoiu, On the Oka-Grauert principle for 1-convex manifolds, Math. Ann. 310 (1998), 561-569 Zbl0902.32011MR1612254
  7. M. Coltoiu, On Hulls of Meromorphy and a Class of Stein Manifolds, Ann. Scuola Norm. Sup. XXVIII (1999), 405-412 Zbl0952.32008MR1736523
  8. S. Eto, H. Kazama, K. Watanabe, On strongly q-pseudoconvex spaces with positive vector bundles, Mem. Fac. Sci. Kyushu Univ. Ser. A 28 (1974), 135-146 Zbl0297.32012MR364681
  9. R. Harvey, J.R. Lawson, An intrinsec characterization of Kähler manifolds, Invent. Math. 74 (1983), 169-198 Zbl0553.32008MR723213
  10. M.L. Michelson, On the existence of special metrics in complex geometry, Acta Math. 143 (1983), 261-295 Zbl0531.53053MR688351
  11. R. Narasimhan, The Levi problem for complex spaces II, Math. Ann. 146 (1962), 195-216 Zbl0131.30801MR182747
  12. H.H. Schäfer, Topological Vector Spaces, 3 (1970), Springer Zbl0217.16002
  13. M. Schneider, Familien negativer Vektorbündel und 1-convexe Abbilungen, Abh. Math. Sem. Univ. Hamburg 47 (1978), 150-170 Zbl0391.32011MR492393
  14. A. Silva, Embedding strongly ( 1 , 1 ) -convex-concave spaces in m × n , Several complex variables Vol. XXX, Part 2 (1977), 41-44, Amer. Math. Soc., Providence R.I. Zbl0366.32006
  15. Vo Van Tan, Embedding theorems and Kählerity for 1-convex spaces, Comment. Math. Helv. 57 (1982), 196-201 Zbl0555.32012MR684112
  16. Vo Van Tan, On the Kählerian geometry of 1-convex threefolds, Forum Math. 7 (1995), 131-146 Zbl0839.32003MR1316945

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.