On the embedding of 1-convex manifolds with 1-dimensional exceptional set
Lucia Alessandrini[1]; Giovanni Bassanelli[1]
- [1] Università di Parma, Dipartimento di Matematica, Via Massimo d'Azeglio 85/A, 43100 Parma (Italie)
Annales de l’institut Fourier (2001)
- Volume: 51, Issue: 1, page 99-108
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topAlessandrini, Lucia, and Bassanelli, Giovanni. "On the embedding of 1-convex manifolds with 1-dimensional exceptional set." Annales de l’institut Fourier 51.1 (2001): 99-108. <http://eudml.org/doc/115916>.
@article{Alessandrini2001,
abstract = {In this paper we show that a 1-convex (i.e., strongly pseudoconvex) manifold $X$, with 1-
dimensional exceptional set $S$ and finitely generated second homology group $H_2(X,\{\mathbb \{Z\}\})$, is embeddable in $\{\mathbb \{C\}\}^m\times \{\mathbb \{C\}\}\{\mathbb \{P\}\}_n$ if and only if $X$ is
Kähler, and this case occurs only when $S$ does not contain any effective curve which is
a boundary.},
affiliation = {Università di Parma, Dipartimento di Matematica, Via Massimo d'Azeglio 85/A, 43100 Parma (Italie); Università di Parma, Dipartimento di Matematica, Via Massimo d'Azeglio 85/A, 43100 Parma (Italie)},
author = {Alessandrini, Lucia, Bassanelli, Giovanni},
journal = {Annales de l’institut Fourier},
keywords = {1-convex manifolds; Kähler manifolds; strongly pseudoconvex complex space; 1-convex complex space; 1-convex complex manifold; strongly pseudoconvex complex manifold; Kähler manifold; exceptional set; embedding theorem},
language = {eng},
number = {1},
pages = {99-108},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the embedding of 1-convex manifolds with 1-dimensional exceptional set},
url = {http://eudml.org/doc/115916},
volume = {51},
year = {2001},
}
TY - JOUR
AU - Alessandrini, Lucia
AU - Bassanelli, Giovanni
TI - On the embedding of 1-convex manifolds with 1-dimensional exceptional set
JO - Annales de l’institut Fourier
PY - 2001
PB - Association des Annales de l'Institut Fourier
VL - 51
IS - 1
SP - 99
EP - 108
AB - In this paper we show that a 1-convex (i.e., strongly pseudoconvex) manifold $X$, with 1-
dimensional exceptional set $S$ and finitely generated second homology group $H_2(X,{\mathbb {Z}})$, is embeddable in ${\mathbb {C}}^m\times {\mathbb {C}}{\mathbb {P}}_n$ if and only if $X$ is
Kähler, and this case occurs only when $S$ does not contain any effective curve which is
a boundary.
LA - eng
KW - 1-convex manifolds; Kähler manifolds; strongly pseudoconvex complex space; 1-convex complex space; 1-convex complex manifold; strongly pseudoconvex complex manifold; Kähler manifold; exceptional set; embedding theorem
UR - http://eudml.org/doc/115916
ER -
References
top- L. Alessandrini, G. Bassanelli, Metric properties of manifolds bimeromorphic to compact Kähler spaces, J. Differential Geom. 37 (1993), 95-121 Zbl0793.53068MR1198601
- C. Banica, Sur les fibres infinitésimales d'un morphisme propre d'espaces complexes, Sém. F. Norguet, Fonctions de plusieurs variables complexes IV 807 (1980), Springer Zbl0445.32019
- G. Bassanelli, A cut-off theorem for plurisubharmonic currents, Forum Math. 6 (1994), 567-595 Zbl0808.32010MR1295153
- M. Coltoiu, On the embedding of 1-convex manifolds with 1-dimensional exceptional set, Comment. Math. Helv. 60 (1985), 458-465 Zbl0583.32047MR814151
- M. Coltoiu, On 1-convex manifolds with 1-dimensional exceptional set (Collection of papers in memory of Martin Jurchescu), Rev. Roum. Math. Pures Appl. 43 (1998), 97-104 Zbl0932.32018MR1655264
- M. Coltoiu, On the Oka-Grauert principle for 1-convex manifolds, Math. Ann. 310 (1998), 561-569 Zbl0902.32011MR1612254
- M. Coltoiu, On Hulls of Meromorphy and a Class of Stein Manifolds, Ann. Scuola Norm. Sup. XXVIII (1999), 405-412 Zbl0952.32008MR1736523
- S. Eto, H. Kazama, K. Watanabe, On strongly q-pseudoconvex spaces with positive vector bundles, Mem. Fac. Sci. Kyushu Univ. Ser. A 28 (1974), 135-146 Zbl0297.32012MR364681
- R. Harvey, J.R. Lawson, An intrinsec characterization of Kähler manifolds, Invent. Math. 74 (1983), 169-198 Zbl0553.32008MR723213
- M.L. Michelson, On the existence of special metrics in complex geometry, Acta Math. 143 (1983), 261-295 Zbl0531.53053MR688351
- R. Narasimhan, The Levi problem for complex spaces II, Math. Ann. 146 (1962), 195-216 Zbl0131.30801MR182747
- H.H. Schäfer, Topological Vector Spaces, 3 (1970), Springer Zbl0217.16002
- M. Schneider, Familien negativer Vektorbündel und 1-convexe Abbilungen, Abh. Math. Sem. Univ. Hamburg 47 (1978), 150-170 Zbl0391.32011MR492393
- A. Silva, Embedding strongly -convex-concave spaces in , Several complex variables Vol. XXX, Part 2 (1977), 41-44, Amer. Math. Soc., Providence R.I. Zbl0366.32006
- Vo Van Tan, Embedding theorems and Kählerity for 1-convex spaces, Comment. Math. Helv. 57 (1982), 196-201 Zbl0555.32012MR684112
- Vo Van Tan, On the Kählerian geometry of 1-convex threefolds, Forum Math. 7 (1995), 131-146 Zbl0839.32003MR1316945
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.