Non-embeddable 1 -convex manifolds

Jan Stevens[1]

  • [1] Matematiska vetenskaper Göteborgs universitet och Chalmers tekniska högskola 41296 Göteborg (Sweden)

Annales de l’institut Fourier (2014)

  • Volume: 64, Issue: 5, page 2205-2222
  • ISSN: 0373-0956

Abstract

top
We show that every small resolution of a 3-dimensional terminal hypersurface singularity can occur on a non-embeddable 1 -convex manifold.We give an explicit example of a non-embeddable manifold containing an irreducible exceptional rational curve with normal bundle of type ( 1 , - 3 ) . To this end we study small resolutions of c D 4 -singularities.

How to cite

top

Stevens, Jan. "Non-embeddable $1$-convex manifolds." Annales de l’institut Fourier 64.5 (2014): 2205-2222. <http://eudml.org/doc/275533>.

@article{Stevens2014,
abstract = {We show that every small resolution of a 3-dimensional terminal hypersurface singularity can occur on a non-embeddable $1$-convex manifold.We give an explicit example of a non-embeddable manifold containing an irreducible exceptional rational curve with normal bundle of type $(1,-3)$. To this end we study small resolutions of $cD_4$-singularities.},
affiliation = {Matematiska vetenskaper Göteborgs universitet och Chalmers tekniska högskola 41296 Göteborg (Sweden)},
author = {Stevens, Jan},
journal = {Annales de l’institut Fourier},
keywords = {1-convex manifolds; small resolutions; strongly pseudoconvex manifold},
language = {eng},
number = {5},
pages = {2205-2222},
publisher = {Association des Annales de l’institut Fourier},
title = {Non-embeddable $1$-convex manifolds},
url = {http://eudml.org/doc/275533},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Stevens, Jan
TI - Non-embeddable $1$-convex manifolds
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 5
SP - 2205
EP - 2222
AB - We show that every small resolution of a 3-dimensional terminal hypersurface singularity can occur on a non-embeddable $1$-convex manifold.We give an explicit example of a non-embeddable manifold containing an irreducible exceptional rational curve with normal bundle of type $(1,-3)$. To this end we study small resolutions of $cD_4$-singularities.
LA - eng
KW - 1-convex manifolds; small resolutions; strongly pseudoconvex manifold
UR - http://eudml.org/doc/275533
ER -

References

top
  1. L. Alessandrini, G. Bassanelli, On the embedding of 1-convex manifolds with 1-dimensional exceptional set, Ann. Inst. Fourier (Grenoble) 51 (2001), 99-108 Zbl0966.32008MR1821070
  2. Lucia Alessandrini, Giovanni Bassanelli, Transforms of currents by modifications and 1-convex manifolds, Osaka J. Math. 40 (2003), 717-740 Zbl1034.32009MR2003745
  3. V. I. Arnol’d, S. M. Guseĭn-Zade, A. N. Varchenko, Singularities of differentiable maps. Vol. I, 82 (1985), Birkhäuser Boston, Inc., Boston, MA Zbl0554.58001MR777682
  4. Giovanni Bassanelli, Marco Leoni, Some examples of 1-convex non-embeddable threefolds, Rev. Roumaine Math. Pures Appl. 52 (2007), 611-617 Zbl1174.32014MR2387599
  5. Herbert Clemens, János Kollár, Shigefumi Mori, Higher-dimensional complex geometry Zbl0689.14016MR1004926
  6. Mihnea Colţoiu, On 1 -convex manifolds with 1 -dimensional exceptional set, Rev. Roumaine Math. Pures Appl. 43 (1998), 97-104 Zbl0932.32018MR1655264
  7. Mihnea Colţoiu, Some remarks about 1-convex manifolds on which all holomorphic line bundles are trivial, Bull. Sci. Math. 130 (2006), 337-340 Zbl1111.32007MR2237448
  8. Sheldon Katz, David R. Morrison, Gorenstein threefold singularities with small resolutions via invariant theory for Weyl groups, J. Algebraic Geom. 1 (1992), 449-530 Zbl0788.14036MR1158626
  9. Yujiro Kawamata, General hyperplane sections of nonsingular flops in dimension 3 , Math. Res. Lett. 1 (1994), 49-52 Zbl0834.32007MR1258489
  10. János Kollár, Flips, flops, minimal models, etc, Surveys in differential geometry (Cambridge, MA, 1990) (1991), 113-199, Lehigh Univ., Bethlehem, PA Zbl0755.14003MR1144527
  11. Henry B. Laufer, On C P 1 as an exceptional set, Recent developments in several complex variables (Proc. Conf., Princeton Univ., Princeton, N. J., 1979) 100 (1981), 261-275, Princeton Univ. Press, Princeton, N.J. Zbl0523.32007MR627762
  12. B. G. Moĭšezon, Irreducible exceptional submanifolds, of the first kind, of three-dimensional complex-analytic manifolds, Soviet Math. Dokl. 6 (1965), 402-403 Zbl0158.33103MR222916
  13. Henry C. Pinkham, Factorization of birational maps in dimension 3 , Singularities, Part 2 (Arcata, Calif., 1981) 40 (1983), 343-371, Amer. Math. Soc., Providence, RI Zbl0544.14005MR713260
  14. G. V. Ravindra, V. Srinivas, The Grothendieck-Lefschetz theorem for normal projective varieties, J. Algebraic Geom. 15 (2006), 563-590 Zbl1123.14004MR2219849
  15. G. V. Ravindra, V. Srinivas, The Noether-Lefschetz theorem for the divisor class group, J. Algebra 322 (2009), 3373-3391 Zbl1189.14010MR2567426
  16. Miles Reid, Minimal models of canonical 3 -folds, Algebraic varieties and analytic varieties (Tokyo, 1981) 1 (1983), 131-180, North-Holland, Amsterdam Zbl0558.14028MR715649
  17. Michael Schneider, Familien negativer Vektorraumbündel und 1 -konvexe Abbildungen, Abh. Math. Sem. Univ. Hamburg 47 (1978), 150-170 Zbl0391.32011MR492393
  18. Vo Van Tan, On certain non-Kählerian strongly pseudoconvex manifolds, J. Geom. Anal. 4 (1994), 233-245 Zbl0807.32018MR1277508
  19. Vo Van Tan, On the Kählerian geometry of 1 -convex threefolds, Forum Math. 7 (1995), 131-146 Zbl0839.32003MR1316945
  20. G. N. Tjurina, Resolution of singularities of flat deformations of double rational points, Funkcional. Anal. i Priložen. 4 (1970), 77-83 Zbl0221.32008MR267129
  21. Viorel Vâjâitu, On embeddable 1-convex spaces, Osaka J. Math. 38 (2001), 287-294 Zbl0982.32010MR1833621
  22. Tan Vo Van, On the quasi-projectivity of compactifiable strongly pseudoconvex manifolds, Bull. Sci. Math. 129 (2005), 501-522 Zbl1083.32010MR2142895

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.