Non-embeddable -convex manifolds
Jan Stevens[1]
- [1] Matematiska vetenskaper Göteborgs universitet och Chalmers tekniska högskola 41296 Göteborg (Sweden)
Annales de l’institut Fourier (2014)
- Volume: 64, Issue: 5, page 2205-2222
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topStevens, Jan. "Non-embeddable $1$-convex manifolds." Annales de l’institut Fourier 64.5 (2014): 2205-2222. <http://eudml.org/doc/275533>.
@article{Stevens2014,
abstract = {We show that every small resolution of a 3-dimensional terminal hypersurface singularity can occur on a non-embeddable $1$-convex manifold.We give an explicit example of a non-embeddable manifold containing an irreducible exceptional rational curve with normal bundle of type $(1,-3)$. To this end we study small resolutions of $cD_4$-singularities.},
affiliation = {Matematiska vetenskaper Göteborgs universitet och Chalmers tekniska högskola 41296 Göteborg (Sweden)},
author = {Stevens, Jan},
journal = {Annales de l’institut Fourier},
keywords = {1-convex manifolds; small resolutions; strongly pseudoconvex manifold},
language = {eng},
number = {5},
pages = {2205-2222},
publisher = {Association des Annales de l’institut Fourier},
title = {Non-embeddable $1$-convex manifolds},
url = {http://eudml.org/doc/275533},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Stevens, Jan
TI - Non-embeddable $1$-convex manifolds
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 5
SP - 2205
EP - 2222
AB - We show that every small resolution of a 3-dimensional terminal hypersurface singularity can occur on a non-embeddable $1$-convex manifold.We give an explicit example of a non-embeddable manifold containing an irreducible exceptional rational curve with normal bundle of type $(1,-3)$. To this end we study small resolutions of $cD_4$-singularities.
LA - eng
KW - 1-convex manifolds; small resolutions; strongly pseudoconvex manifold
UR - http://eudml.org/doc/275533
ER -
References
top- L. Alessandrini, G. Bassanelli, On the embedding of 1-convex manifolds with 1-dimensional exceptional set, Ann. Inst. Fourier (Grenoble) 51 (2001), 99-108 Zbl0966.32008MR1821070
- Lucia Alessandrini, Giovanni Bassanelli, Transforms of currents by modifications and 1-convex manifolds, Osaka J. Math. 40 (2003), 717-740 Zbl1034.32009MR2003745
- V. I. Arnol’d, S. M. Guseĭn-Zade, A. N. Varchenko, Singularities of differentiable maps. Vol. I, 82 (1985), Birkhäuser Boston, Inc., Boston, MA Zbl0554.58001MR777682
- Giovanni Bassanelli, Marco Leoni, Some examples of 1-convex non-embeddable threefolds, Rev. Roumaine Math. Pures Appl. 52 (2007), 611-617 Zbl1174.32014MR2387599
- Herbert Clemens, János Kollár, Shigefumi Mori, Higher-dimensional complex geometry Zbl0689.14016MR1004926
- Mihnea Colţoiu, On -convex manifolds with -dimensional exceptional set, Rev. Roumaine Math. Pures Appl. 43 (1998), 97-104 Zbl0932.32018MR1655264
- Mihnea Colţoiu, Some remarks about 1-convex manifolds on which all holomorphic line bundles are trivial, Bull. Sci. Math. 130 (2006), 337-340 Zbl1111.32007MR2237448
- Sheldon Katz, David R. Morrison, Gorenstein threefold singularities with small resolutions via invariant theory for Weyl groups, J. Algebraic Geom. 1 (1992), 449-530 Zbl0788.14036MR1158626
- Yujiro Kawamata, General hyperplane sections of nonsingular flops in dimension , Math. Res. Lett. 1 (1994), 49-52 Zbl0834.32007MR1258489
- János Kollár, Flips, flops, minimal models, etc, Surveys in differential geometry (Cambridge, MA, 1990) (1991), 113-199, Lehigh Univ., Bethlehem, PA Zbl0755.14003MR1144527
- Henry B. Laufer, On as an exceptional set, Recent developments in several complex variables (Proc. Conf., Princeton Univ., Princeton, N. J., 1979) 100 (1981), 261-275, Princeton Univ. Press, Princeton, N.J. Zbl0523.32007MR627762
- B. G. Moĭšezon, Irreducible exceptional submanifolds, of the first kind, of three-dimensional complex-analytic manifolds, Soviet Math. Dokl. 6 (1965), 402-403 Zbl0158.33103MR222916
- Henry C. Pinkham, Factorization of birational maps in dimension , Singularities, Part 2 (Arcata, Calif., 1981) 40 (1983), 343-371, Amer. Math. Soc., Providence, RI Zbl0544.14005MR713260
- G. V. Ravindra, V. Srinivas, The Grothendieck-Lefschetz theorem for normal projective varieties, J. Algebraic Geom. 15 (2006), 563-590 Zbl1123.14004MR2219849
- G. V. Ravindra, V. Srinivas, The Noether-Lefschetz theorem for the divisor class group, J. Algebra 322 (2009), 3373-3391 Zbl1189.14010MR2567426
- Miles Reid, Minimal models of canonical -folds, Algebraic varieties and analytic varieties (Tokyo, 1981) 1 (1983), 131-180, North-Holland, Amsterdam Zbl0558.14028MR715649
- Michael Schneider, Familien negativer Vektorraumbündel und -konvexe Abbildungen, Abh. Math. Sem. Univ. Hamburg 47 (1978), 150-170 Zbl0391.32011MR492393
- Vo Van Tan, On certain non-Kählerian strongly pseudoconvex manifolds, J. Geom. Anal. 4 (1994), 233-245 Zbl0807.32018MR1277508
- Vo Van Tan, On the Kählerian geometry of -convex threefolds, Forum Math. 7 (1995), 131-146 Zbl0839.32003MR1316945
- G. N. Tjurina, Resolution of singularities of flat deformations of double rational points, Funkcional. Anal. i Priložen. 4 (1970), 77-83 Zbl0221.32008MR267129
- Viorel Vâjâitu, On embeddable 1-convex spaces, Osaka J. Math. 38 (2001), 287-294 Zbl0982.32010MR1833621
- Tan Vo Van, On the quasi-projectivity of compactifiable strongly pseudoconvex manifolds, Bull. Sci. Math. 129 (2005), 501-522 Zbl1083.32010MR2142895
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.