Fully commutative Kazhdan-Lusztig cells
Richard M. Green[1]; Jozsef Losonczy[2]
- [1] Lancaster University, Department of Mathematics and Statistics, Lancaster LA1 4YF (Grande-Bretagne)
- [2] Long Island University, Department of Mathematics, Brookville, NY 11548 (USA)
Annales de l’institut Fourier (2001)
- Volume: 51, Issue: 4, page 1025-1045
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGreen, Richard M., and Losonczy, Jozsef. "Fully commutative Kazhdan-Lusztig cells." Annales de l’institut Fourier 51.4 (2001): 1025-1045. <http://eudml.org/doc/115932>.
@article{Green2001,
abstract = {We investigate the compatibility of the set of fully commutative elements of a Coxeter
group with the various types of Kazhdan-Lusztig cells using a canonical basis for a
generalized version of the Temperley-Lieb algebra.},
affiliation = {Lancaster University, Department of Mathematics and Statistics, Lancaster LA1 4YF (Grande-Bretagne); Long Island University, Department of Mathematics, Brookville, NY 11548 (USA)},
author = {Green, Richard M., Losonczy, Jozsef},
journal = {Annales de l’institut Fourier},
keywords = {canonical basis; cell theory; Coxeter group; Hecke algebra; Kazhdan-Lusztig basis; Temperley-Lieb algebra; Hecke algebras; Coxeter groups; Kazhdan-Lusztig cells; fully commutative elements},
language = {eng},
number = {4},
pages = {1025-1045},
publisher = {Association des Annales de l'Institut Fourier},
title = {Fully commutative Kazhdan-Lusztig cells},
url = {http://eudml.org/doc/115932},
volume = {51},
year = {2001},
}
TY - JOUR
AU - Green, Richard M.
AU - Losonczy, Jozsef
TI - Fully commutative Kazhdan-Lusztig cells
JO - Annales de l’institut Fourier
PY - 2001
PB - Association des Annales de l'Institut Fourier
VL - 51
IS - 4
SP - 1025
EP - 1045
AB - We investigate the compatibility of the set of fully commutative elements of a Coxeter
group with the various types of Kazhdan-Lusztig cells using a canonical basis for a
generalized version of the Temperley-Lieb algebra.
LA - eng
KW - canonical basis; cell theory; Coxeter group; Hecke algebra; Kazhdan-Lusztig basis; Temperley-Lieb algebra; Hecke algebras; Coxeter groups; Kazhdan-Lusztig cells; fully commutative elements
UR - http://eudml.org/doc/115932
ER -
References
top- F. du Cloux, Coxeter Version 1.01, (1991), Université de Lyon, France
- C.K. Fan, A Hecke algebra quotient and properties of commutative elements of a Weyl group, (1995)
- C.K. Fan, R.M. Green, Monomials and Temperley--Lieb algebras, J. Algebra 190 (1997), 498-517 Zbl0899.20018MR1441960
- C.K. Fan, J.R. Stembridge, Nilpotent orbits and commutative elements, J. Algebra 196 (1997), 490-498 Zbl0915.20019MR1475121
- D. Garfinkle, On the classification of primitive ideals for complex classical Lie algebras, I, Compositio Math. 75 (1990), 135-169 Zbl0737.17003MR1065203
- D. Garfinkle, On the classification of primitive ideals for complex classical Lie algebras, II, Compositio Math. 81 (1992), 307-336 Zbl0762.17007MR1149172
- D. Garfinkle, On the classification of primitive ideals for complex classical Lie algebras, III, Compositio Math. 88 (1993), 187-234 Zbl0798.17007MR1237920
- J.J. Graham, Modular representations of Hecke algebras and related algebras, (1995)
- R.M. Green, Generalized Temperley--Lieb algebras and decorated tangles, J. Knot Theory Ramifications 7 (1998), 155-171 Zbl0926.20005MR1618912
- R.M. Green, Decorated tangles and canonical bases Zbl0998.20007MR1872116
- R.M. Green, J. Losonczy, Canonical bases for Hecke algebra quotients, Math. Res. Lett. 6 (1999), 213-222 Zbl0961.20007MR1689211
- R.M. Green, J. Losonczy, A projection property for Kazhdan--Lusztig bases, Internat. Math. Res. Notices 1 (2000), 23-34 Zbl0961.20008MR1741607
- J.E. Humphreys, Reflection Groups and Coxeter Groups, (1990), Cambridge University Press, Cambridge Zbl0768.20016MR1066460
- D. Kazhdan, G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165-184 Zbl0499.20035MR560412
- J. Losonczy, The Kazhdan--Lusztig basis and the Temperley--Lieb quotient in type D, J. Algebra 233 (2000), 1-15 Zbl0969.20003MR1793587
- G. Lusztig, Cells in affine Weyl groups, II, J. Algebra 109 (1987), 536-548 Zbl0625.20032MR902967
- J.R. Stembridge, On the fully commutative elements of Coxeter groups, J. Algebraic Combin. 5 (1996), 353-385 Zbl0864.20025MR1406459
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.