Fully commutative Kazhdan-Lusztig cells

Richard M. Green[1]; Jozsef Losonczy[2]

  • [1] Lancaster University, Department of Mathematics and Statistics, Lancaster LA1 4YF (Grande-Bretagne)
  • [2] Long Island University, Department of Mathematics, Brookville, NY 11548 (USA)

Annales de l’institut Fourier (2001)

  • Volume: 51, Issue: 4, page 1025-1045
  • ISSN: 0373-0956

Abstract

top
We investigate the compatibility of the set of fully commutative elements of a Coxeter group with the various types of Kazhdan-Lusztig cells using a canonical basis for a generalized version of the Temperley-Lieb algebra.

How to cite

top

Green, Richard M., and Losonczy, Jozsef. "Fully commutative Kazhdan-Lusztig cells." Annales de l’institut Fourier 51.4 (2001): 1025-1045. <http://eudml.org/doc/115932>.

@article{Green2001,
abstract = {We investigate the compatibility of the set of fully commutative elements of a Coxeter group with the various types of Kazhdan-Lusztig cells using a canonical basis for a generalized version of the Temperley-Lieb algebra.},
affiliation = {Lancaster University, Department of Mathematics and Statistics, Lancaster LA1 4YF (Grande-Bretagne); Long Island University, Department of Mathematics, Brookville, NY 11548 (USA)},
author = {Green, Richard M., Losonczy, Jozsef},
journal = {Annales de l’institut Fourier},
keywords = {canonical basis; cell theory; Coxeter group; Hecke algebra; Kazhdan-Lusztig basis; Temperley-Lieb algebra; Hecke algebras; Coxeter groups; Kazhdan-Lusztig cells; fully commutative elements},
language = {eng},
number = {4},
pages = {1025-1045},
publisher = {Association des Annales de l'Institut Fourier},
title = {Fully commutative Kazhdan-Lusztig cells},
url = {http://eudml.org/doc/115932},
volume = {51},
year = {2001},
}

TY - JOUR
AU - Green, Richard M.
AU - Losonczy, Jozsef
TI - Fully commutative Kazhdan-Lusztig cells
JO - Annales de l’institut Fourier
PY - 2001
PB - Association des Annales de l'Institut Fourier
VL - 51
IS - 4
SP - 1025
EP - 1045
AB - We investigate the compatibility of the set of fully commutative elements of a Coxeter group with the various types of Kazhdan-Lusztig cells using a canonical basis for a generalized version of the Temperley-Lieb algebra.
LA - eng
KW - canonical basis; cell theory; Coxeter group; Hecke algebra; Kazhdan-Lusztig basis; Temperley-Lieb algebra; Hecke algebras; Coxeter groups; Kazhdan-Lusztig cells; fully commutative elements
UR - http://eudml.org/doc/115932
ER -

References

top
  1. F. du Cloux, Coxeter Version 1.01, (1991), Université de Lyon, France 
  2. C.K. Fan, A Hecke algebra quotient and properties of commutative elements of a Weyl group, (1995) 
  3. C.K. Fan, R.M. Green, Monomials and Temperley--Lieb algebras, J. Algebra 190 (1997), 498-517 Zbl0899.20018MR1441960
  4. C.K. Fan, J.R. Stembridge, Nilpotent orbits and commutative elements, J. Algebra 196 (1997), 490-498 Zbl0915.20019MR1475121
  5. D. Garfinkle, On the classification of primitive ideals for complex classical Lie algebras, I, Compositio Math. 75 (1990), 135-169 Zbl0737.17003MR1065203
  6. D. Garfinkle, On the classification of primitive ideals for complex classical Lie algebras, II, Compositio Math. 81 (1992), 307-336 Zbl0762.17007MR1149172
  7. D. Garfinkle, On the classification of primitive ideals for complex classical Lie algebras, III, Compositio Math. 88 (1993), 187-234 Zbl0798.17007MR1237920
  8. J.J. Graham, Modular representations of Hecke algebras and related algebras, (1995) 
  9. R.M. Green, Generalized Temperley--Lieb algebras and decorated tangles, J. Knot Theory Ramifications 7 (1998), 155-171 Zbl0926.20005MR1618912
  10. R.M. Green, Decorated tangles and canonical bases Zbl0998.20007MR1872116
  11. R.M. Green, J. Losonczy, Canonical bases for Hecke algebra quotients, Math. Res. Lett. 6 (1999), 213-222 Zbl0961.20007MR1689211
  12. R.M. Green, J. Losonczy, A projection property for Kazhdan--Lusztig bases, Internat. Math. Res. Notices 1 (2000), 23-34 Zbl0961.20008MR1741607
  13. J.E. Humphreys, Reflection Groups and Coxeter Groups, (1990), Cambridge University Press, Cambridge Zbl0768.20016MR1066460
  14. D. Kazhdan, G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165-184 Zbl0499.20035MR560412
  15. J. Losonczy, The Kazhdan--Lusztig basis and the Temperley--Lieb quotient in type D, J. Algebra 233 (2000), 1-15 Zbl0969.20003MR1793587
  16. G. Lusztig, Cells in affine Weyl groups, II, J. Algebra 109 (1987), 536-548 Zbl0625.20032MR902967
  17. J.R. Stembridge, On the fully commutative elements of Coxeter groups, J. Algebraic Combin. 5 (1996), 353-385 Zbl0864.20025MR1406459

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.