On the classification of primitive ideals for complex classical Lie algebras, I
Compositio Mathematica (1990)
- Volume: 75, Issue: 2, page 135-169
- ISSN: 0010-437X
Access Full Article
topHow to cite
topGarfinkle, Devra. "On the classification of primitive ideals for complex classical Lie algebras, I." Compositio Mathematica 75.2 (1990): 135-169. <http://eudml.org/doc/90031>.
@article{Garfinkle1990,
author = {Garfinkle, Devra},
journal = {Compositio Mathematica},
keywords = {classical Lie algebra; primitive ideals; enveloping algebra; Robinson- Schensted algorithm; domino tableaux},
language = {eng},
number = {2},
pages = {135-169},
publisher = {Kluwer Academic Publishers},
title = {On the classification of primitive ideals for complex classical Lie algebras, I},
url = {http://eudml.org/doc/90031},
volume = {75},
year = {1990},
}
TY - JOUR
AU - Garfinkle, Devra
TI - On the classification of primitive ideals for complex classical Lie algebras, I
JO - Compositio Mathematica
PY - 1990
PB - Kluwer Academic Publishers
VL - 75
IS - 2
SP - 135
EP - 169
LA - eng
KW - classical Lie algebra; primitive ideals; enveloping algebra; Robinson- Schensted algorithm; domino tableaux
UR - http://eudml.org/doc/90031
ER -
References
top- 1 Barbasch, D. and Vogan, D., Primitive ideals and orbital integrals in complex classical groups, Math. Ann.259 (1982) pp. 153-199. Zbl0489.22010MR656661
- 2 Duflo, M., Sur la classification des idéaux primitifs dans l'algebre enveloppante d'une algebre de Lie semisimple, Ann. of Math.105 (1977) pp. 107-120. Zbl0346.17011MR430005
- 3 Garfinkle, D., Annihilators of irreducible Harish-Chandra modules of U(p, q) and GL(n, R), in preparation. Zbl0786.22023
- 4 Jantzen, J., Moduln mit einem höchsten Gewicht, Lecture Notes in Mathematics vol. 750, Springer, Berlin, 1979. Zbl0426.17001MR552943
- 5 Joseph, A., A characteristic variety for the primitive spectrum of a semisimple Lie algebra, preprint. Short version in: Non-Commutative Harmonic Analysis, ed. by Carmona, J., and Vergne, M., Lecture Notes in Mathematics vol. 587, pp. 102-118, Springer, Berlin1977. Zbl0374.17004MR450350
- 6 Joseph, A., Towards the Jantzen Conjecture, II, Comp. Math.40(1980), pp. 69-78. Zbl0424.17005MR594481
- 7 Kazhdan, D., and Lusztig, G., Representations of Coxeter groups and Hecke algebras, Inv. Math.53 (1979), pp. 165-184. Zbl0499.20035MR560412
- 8 Lusztig, G., A class of irreducible representations of a Weyl group, Proc. Kon. Ned. Akad. van Wetenschappen, ser. A., 82 (1979), pp. 323-335. Zbl0435.20021MR546372
- 9 Shi, J.-Y., The Kazhdan-Lusztig Cells in Certain Affine Weyl Groups, Lecture Notes in Mathematics, vol. 1179, Springer, Berlin, 1986. Zbl0582.20030MR835214
- 10 Vogan, D., A generalized τ-invariant for the primitive spectrum of a semisimple Lie algebra, Math. Ann.242 (1979), pp. 209-224. Zbl0387.17007
- 11 Vogan, D., Irreducible characters of semi-simple Lie groups IV: character multiplicity duality, Duke Math. J.49 (1982), pp. 943-1073. Zbl0536.22022MR683010
Citations in EuDML Documents
top- Richard M. Green, Jozsef Losonczy, Fully commutative Kazhdan-Lusztig cells
- William M. McGovern, Standard domino tableaux and asymptotic Hecke algebras
- Devra Garfinkle, On the classification of primitive ideals for complex classical Lie algebras, III
- Devra Garfinkle, On the classification of primitive ideals for complex classical Lie algebras, II
- William M. McGovern, Left cells and domino tableaux in classical Weyl groups
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.