On the classification of primitive ideals for complex classical Lie algebras, I

Devra Garfinkle

Compositio Mathematica (1990)

  • Volume: 75, Issue: 2, page 135-169
  • ISSN: 0010-437X

How to cite

top

Garfinkle, Devra. "On the classification of primitive ideals for complex classical Lie algebras, I." Compositio Mathematica 75.2 (1990): 135-169. <http://eudml.org/doc/90031>.

@article{Garfinkle1990,
author = {Garfinkle, Devra},
journal = {Compositio Mathematica},
keywords = {classical Lie algebra; primitive ideals; enveloping algebra; Robinson- Schensted algorithm; domino tableaux},
language = {eng},
number = {2},
pages = {135-169},
publisher = {Kluwer Academic Publishers},
title = {On the classification of primitive ideals for complex classical Lie algebras, I},
url = {http://eudml.org/doc/90031},
volume = {75},
year = {1990},
}

TY - JOUR
AU - Garfinkle, Devra
TI - On the classification of primitive ideals for complex classical Lie algebras, I
JO - Compositio Mathematica
PY - 1990
PB - Kluwer Academic Publishers
VL - 75
IS - 2
SP - 135
EP - 169
LA - eng
KW - classical Lie algebra; primitive ideals; enveloping algebra; Robinson- Schensted algorithm; domino tableaux
UR - http://eudml.org/doc/90031
ER -

References

top
  1. 1 Barbasch, D. and Vogan, D., Primitive ideals and orbital integrals in complex classical groups, Math. Ann.259 (1982) pp. 153-199. Zbl0489.22010MR656661
  2. 2 Duflo, M., Sur la classification des idéaux primitifs dans l'algebre enveloppante d'une algebre de Lie semisimple, Ann. of Math.105 (1977) pp. 107-120. Zbl0346.17011MR430005
  3. 3 Garfinkle, D., Annihilators of irreducible Harish-Chandra modules of U(p, q) and GL(n, R), in preparation. Zbl0786.22023
  4. 4 Jantzen, J., Moduln mit einem höchsten Gewicht, Lecture Notes in Mathematics vol. 750, Springer, Berlin, 1979. Zbl0426.17001MR552943
  5. 5 Joseph, A., A characteristic variety for the primitive spectrum of a semisimple Lie algebra, preprint. Short version in: Non-Commutative Harmonic Analysis, ed. by Carmona, J., and Vergne, M., Lecture Notes in Mathematics vol. 587, pp. 102-118, Springer, Berlin1977. Zbl0374.17004MR450350
  6. 6 Joseph, A., Towards the Jantzen Conjecture, II, Comp. Math.40(1980), pp. 69-78. Zbl0424.17005MR594481
  7. 7 Kazhdan, D., and Lusztig, G., Representations of Coxeter groups and Hecke algebras, Inv. Math.53 (1979), pp. 165-184. Zbl0499.20035MR560412
  8. 8 Lusztig, G., A class of irreducible representations of a Weyl group, Proc. Kon. Ned. Akad. van Wetenschappen, ser. A., 82 (1979), pp. 323-335. Zbl0435.20021MR546372
  9. 9 Shi, J.-Y., The Kazhdan-Lusztig Cells in Certain Affine Weyl Groups, Lecture Notes in Mathematics, vol. 1179, Springer, Berlin, 1986. Zbl0582.20030MR835214
  10. 10 Vogan, D., A generalized τ-invariant for the primitive spectrum of a semisimple Lie algebra, Math. Ann.242 (1979), pp. 209-224. Zbl0387.17007
  11. 11 Vogan, D., Irreducible characters of semi-simple Lie groups IV: character multiplicity duality, Duke Math. J.49 (1982), pp. 943-1073. Zbl0536.22022MR683010

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.