On the classification of primitive ideals for complex classical Lie algebras, II

Devra Garfinkle

Compositio Mathematica (1992)

  • Volume: 81, Issue: 3, page 307-336
  • ISSN: 0010-437X

How to cite

top

Garfinkle, Devra. "On the classification of primitive ideals for complex classical Lie algebras, II." Compositio Mathematica 81.3 (1992): 307-336. <http://eudml.org/doc/90142>.

@article{Garfinkle1992,
author = {Garfinkle, Devra},
journal = {Compositio Mathematica},
keywords = {enveloping algebra; semisimple Lie algebra; Robinson-Schensted algorithm; primitive ideals; domino tableaux; special shape; -invariant},
language = {eng},
number = {3},
pages = {307-336},
publisher = {Kluwer Academic Publishers},
title = {On the classification of primitive ideals for complex classical Lie algebras, II},
url = {http://eudml.org/doc/90142},
volume = {81},
year = {1992},
}

TY - JOUR
AU - Garfinkle, Devra
TI - On the classification of primitive ideals for complex classical Lie algebras, II
JO - Compositio Mathematica
PY - 1992
PB - Kluwer Academic Publishers
VL - 81
IS - 3
SP - 307
EP - 336
LA - eng
KW - enveloping algebra; semisimple Lie algebra; Robinson-Schensted algorithm; primitive ideals; domino tableaux; special shape; -invariant
UR - http://eudml.org/doc/90142
ER -

References

top
  1. 1 Barbasch, D. and Vogan, D.: Primitive ideals and orbital integrals in complex classical groups. Math. Ann.259 (1982), 153-199. Zbl0489.22010MR656661
  2. 2 Bourbaki, N.: Groupes et algebres de Lie, Chapitres 4, 5, et 6, Éléments de Mathématiques XXXIV. Paris: Hermann1968. Zbl0483.22001MR240238
  3. 3 Duflo, M.: Sur la classification des idéaux primitifs dans l'algèbre enveloppante d'une algèbre de Lie semi-simple. Ann. of Math.105 (1977), 107-120. Zbl0346.17011MR430005
  4. 4 Garfinkle, D.: On the classification of primitive ideals for complex classical Lie algebras, I. Comp. Math.75 (1990), 135-169. Zbl0737.17003MR1065203
  5. 5 Garfinkle, D.: The annihilators of irreducible Harish-Chandra modules for SU(p, q) and other type An-1 groups. Am. J. Math., to appear. Zbl0786.22023MR1216434
  6. 6 Jantzen, J.: Moduln mit einem höchsten Gewicht, Lecture Notes in Mathematics, vol 750. Springer, Berlin (1979). Zbl0426.17001MR552943
  7. 7 Joseph, A.: A characteristic variety for the primitive spectrum of a semisimple Lie algebra, preprint. Short version in: Carmona, J. and Vergne, M. (eds), Non-commutative Harmonic Analysis: Lecture Notes in Mathematics vol. 587, pp. 102-118. Springer: Berlin (1977). Zbl0374.17004MR450350
  8. 8 Joseph, A.: Towards the Jantzen conjecture, II. Comp. Math.40 (1980), 69-78. Zbl0424.17005MR594481
  9. 9 Kazhdan, D. and Lusztig, G.: Representations of Coxeter groups and Hecke algebras. Inv. Math.53 (1979), 165-184. Zbl0499.20035MR560412
  10. 10 Lusztig, G.: A class of irreducible representations of a Weyl group. Proc. Kon. Nederl. Akad., Series A82 (1979), 323-335. Zbl0435.20021MR546372
  11. 11 Vogan, D.: A generalized τ-invariant for the primitive spectrum of a semisimple Lie algebra. Math. Ann.242 (1979), 209-224. Zbl0387.17007

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.