On the classification of primitive ideals for complex classical Lie algebras, II
Compositio Mathematica (1992)
- Volume: 81, Issue: 3, page 307-336
- ISSN: 0010-437X
Access Full Article
topHow to cite
topReferences
top- 1 Barbasch, D. and Vogan, D.: Primitive ideals and orbital integrals in complex classical groups. Math. Ann.259 (1982), 153-199. Zbl0489.22010MR656661
- 2 Bourbaki, N.: Groupes et algebres de Lie, Chapitres 4, 5, et 6, Éléments de Mathématiques XXXIV. Paris: Hermann1968. Zbl0483.22001MR240238
- 3 Duflo, M.: Sur la classification des idéaux primitifs dans l'algèbre enveloppante d'une algèbre de Lie semi-simple. Ann. of Math.105 (1977), 107-120. Zbl0346.17011MR430005
- 4 Garfinkle, D.: On the classification of primitive ideals for complex classical Lie algebras, I. Comp. Math.75 (1990), 135-169. Zbl0737.17003MR1065203
- 5 Garfinkle, D.: The annihilators of irreducible Harish-Chandra modules for SU(p, q) and other type An-1 groups. Am. J. Math., to appear. Zbl0786.22023MR1216434
- 6 Jantzen, J.: Moduln mit einem höchsten Gewicht, Lecture Notes in Mathematics, vol 750. Springer, Berlin (1979). Zbl0426.17001MR552943
- 7 Joseph, A.: A characteristic variety for the primitive spectrum of a semisimple Lie algebra, preprint. Short version in: Carmona, J. and Vergne, M. (eds), Non-commutative Harmonic Analysis: Lecture Notes in Mathematics vol. 587, pp. 102-118. Springer: Berlin (1977). Zbl0374.17004MR450350
- 8 Joseph, A.: Towards the Jantzen conjecture, II. Comp. Math.40 (1980), 69-78. Zbl0424.17005MR594481
- 9 Kazhdan, D. and Lusztig, G.: Representations of Coxeter groups and Hecke algebras. Inv. Math.53 (1979), 165-184. Zbl0499.20035MR560412
- 10 Lusztig, G.: A class of irreducible representations of a Weyl group. Proc. Kon. Nederl. Akad., Series A82 (1979), 323-335. Zbl0435.20021MR546372
- 11 Vogan, D.: A generalized τ-invariant for the primitive spectrum of a semisimple Lie algebra. Math. Ann.242 (1979), 209-224. Zbl0387.17007