estimates for functions of the Laplace-Beltrami operator on noncompact symmetric spaces. III
Michael Cowling[1]; Saverio Giulini[2]; Stefano Meda[3]
- [1] University of New South Wales, School of Mathematics, Sydney NSW 2052 (Australie)
- [2] Università di Genova, Dipartimento di Matematica, Via Dodescano 35, 16146 Genova (Italie)
- [3] Università di Milano-Bicocca, Dipartimento di Statistica, Via Bicocca degli Arcimboldi 8, 20126 Milano (Italie)
Annales de l’institut Fourier (2001)
- Volume: 51, Issue: 4, page 1047-1069
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topCowling, Michael, Giulini, Saverio, and Meda, Stefano. "$L^p-L^q$ estimates for functions of the Laplace-Beltrami operator on noncompact symmetric spaces. III." Annales de l’institut Fourier 51.4 (2001): 1047-1069. <http://eudml.org/doc/115933>.
@article{Cowling2001,
abstract = {Let $X$ be a symmetric space of the noncompact type, with Laplace–Beltrami operator $-
\{\mathcal \{L\}\}$, and let $[b,\infty )$ be the $L^2(X)$-spectrum of $\{\mathcal \{L\}\}$. For $\tau $ in
$\{\mathbb \{C\}\}$ such that $\{\rm Re\}\,\tau \ge 0$, let $\{\mathcal \{P\}\}_\tau $ be the operator on
$L^2(X)$ defined formally as $\{\rm exp\}\,(-\tau (\{\mathcal \{L\}\} - b)^\{1/2\} )$. In this paper, we
obtain $L^p-L^q$ operator norm estimates for $\{\mathcal \{P\}\}_\tau $ for all $\tau $, and show
that these are optimal when $\tau $ is small and when $\vert \{\rm arg\}\,\tau \vert $ is
bounded below $\pi /2$.},
affiliation = {University of New South Wales, School of Mathematics, Sydney NSW 2052 (Australie); Università di Genova, Dipartimento di Matematica, Via Dodescano 35, 16146 Genova (Italie); Università di Milano-Bicocca, Dipartimento di Statistica, Via Bicocca degli Arcimboldi 8, 20126 Milano (Italie)},
author = {Cowling, Michael, Giulini, Saverio, Meda, Stefano},
journal = {Annales de l’institut Fourier},
keywords = {symmetric space; wave equation; $L^p-L^q$ estimates; estimates; Poisson semigroup; semisimple Lie group; Laplace-Beltrami operator},
language = {eng},
number = {4},
pages = {1047-1069},
publisher = {Association des Annales de l'Institut Fourier},
title = {$L^p-L^q$ estimates for functions of the Laplace-Beltrami operator on noncompact symmetric spaces. III},
url = {http://eudml.org/doc/115933},
volume = {51},
year = {2001},
}
TY - JOUR
AU - Cowling, Michael
AU - Giulini, Saverio
AU - Meda, Stefano
TI - $L^p-L^q$ estimates for functions of the Laplace-Beltrami operator on noncompact symmetric spaces. III
JO - Annales de l’institut Fourier
PY - 2001
PB - Association des Annales de l'Institut Fourier
VL - 51
IS - 4
SP - 1047
EP - 1069
AB - Let $X$ be a symmetric space of the noncompact type, with Laplace–Beltrami operator $-
{\mathcal {L}}$, and let $[b,\infty )$ be the $L^2(X)$-spectrum of ${\mathcal {L}}$. For $\tau $ in
${\mathbb {C}}$ such that ${\rm Re}\,\tau \ge 0$, let ${\mathcal {P}}_\tau $ be the operator on
$L^2(X)$ defined formally as ${\rm exp}\,(-\tau ({\mathcal {L}} - b)^{1/2} )$. In this paper, we
obtain $L^p-L^q$ operator norm estimates for ${\mathcal {P}}_\tau $ for all $\tau $, and show
that these are optimal when $\tau $ is small and when $\vert {\rm arg}\,\tau \vert $ is
bounded below $\pi /2$.
LA - eng
KW - symmetric space; wave equation; $L^p-L^q$ estimates; estimates; Poisson semigroup; semisimple Lie group; Laplace-Beltrami operator
UR - http://eudml.org/doc/115933
ER -
References
top- J.-Ph. Anker, Sharp estimates for some functions of the Laplacian on noncompact symmetric spaces, Duke Math. J. 65 (1992), 257-297 Zbl0764.43005MR1150587
- J.-Ph. Anker, Fourier multipliers on Riemannian symmetric spaces of the noncompact type, Ann. Math. 132 (1990), 597-628 Zbl0741.43009MR1078270
- J.-Ph. Anker, L. Ji, Heat kernel and Green function estimates on noncompact symmetric spaces I, II Zbl0942.43005
- P.H. Bérard, On the wave equation on a compact Riemannian manifold without conjugate point, Math. Z. 155 (1977), 249-276 Zbl0341.35052MR455055
- J. Cheeger, M. Gromov, M. Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Diff. Geom. 17 (1982), 15-53 Zbl0493.53035MR658471
- M.G. Cowling, S. Giulini, S. Meda, Estimates for functions of the Laplace--Beltrami operator on noncompact symmetric spaces. I, Duke Math. J. 72 (1993), 109-150 Zbl0807.43002MR1242882
- M.G. Cowling, S. Giulini, S. Meda, Estimates for functions of the Laplace--Beltrami operator on noncompact symmetric spaces. II, J. Lie Th. 5 (1995), 1-14 Zbl0835.43011MR1362006
- S. Helgason, Groups and Geometric Analysis, (1984), Academic Press, New York Zbl0543.58001MR754767
- S. Helgason, Wave equations on homogeneous spaces, Lie Group Representations III 1077 (1984), 254-287, Springer-Verlag Zbl0547.58037
- L. Hörmander, Estimates for translation invariant operators in spaces, Acta Math. 104 (1960), 93-140 Zbl0093.11402MR121655
- L. Hörmander, The Analysis of Linear Partial Differential Operators. III., 274 (1985), Springer-Verlag, Berlin Heidelberg New York Zbl0601.35001MR781536
- M. Taylor, estimates on functions of the Laplace operator, Duke Math. J. 58 (1989), 773-793 Zbl0691.58043MR1016445
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.