L p - L q estimates for functions of the Laplace-Beltrami operator on noncompact symmetric spaces. III

Michael Cowling[1]; Saverio Giulini[2]; Stefano Meda[3]

  • [1] University of New South Wales, School of Mathematics, Sydney NSW 2052 (Australie)
  • [2] Università di Genova, Dipartimento di Matematica, Via Dodescano 35, 16146 Genova (Italie)
  • [3] Università di Milano-Bicocca, Dipartimento di Statistica, Via Bicocca degli Arcimboldi 8, 20126 Milano (Italie)

Annales de l’institut Fourier (2001)

  • Volume: 51, Issue: 4, page 1047-1069
  • ISSN: 0373-0956

Abstract

top
Let X be a symmetric space of the noncompact type, with Laplace–Beltrami operator - , and let [ b , ) be the L 2 ( X ) -spectrum of . For τ in such that Re τ 0 , let 𝒫 τ be the operator on L 2 ( X ) defined formally as exp ( - τ ( - b ) 1 / 2 ) . In this paper, we obtain L p - L q operator norm estimates for 𝒫 τ for all τ , and show that these are optimal when τ is small and when | arg τ | is bounded below π / 2 .

How to cite

top

Cowling, Michael, Giulini, Saverio, and Meda, Stefano. "$L^p-L^q$ estimates for functions of the Laplace-Beltrami operator on noncompact symmetric spaces. III." Annales de l’institut Fourier 51.4 (2001): 1047-1069. <http://eudml.org/doc/115933>.

@article{Cowling2001,
abstract = {Let $X$ be a symmetric space of the noncompact type, with Laplace–Beltrami operator $- \{\mathcal \{L\}\}$, and let $[b,\infty )$ be the $L^2(X)$-spectrum of $\{\mathcal \{L\}\}$. For $\tau $ in $\{\mathbb \{C\}\}$ such that $\{\rm Re\}\,\tau \ge 0$, let $\{\mathcal \{P\}\}_\tau $ be the operator on $L^2(X)$ defined formally as $\{\rm exp\}\,(-\tau (\{\mathcal \{L\}\} - b)^\{1/2\} )$. In this paper, we obtain $L^p-L^q$ operator norm estimates for $\{\mathcal \{P\}\}_\tau $ for all $\tau $, and show that these are optimal when $\tau $ is small and when $\vert \{\rm arg\}\,\tau \vert $ is bounded below $\pi /2$.},
affiliation = {University of New South Wales, School of Mathematics, Sydney NSW 2052 (Australie); Università di Genova, Dipartimento di Matematica, Via Dodescano 35, 16146 Genova (Italie); Università di Milano-Bicocca, Dipartimento di Statistica, Via Bicocca degli Arcimboldi 8, 20126 Milano (Italie)},
author = {Cowling, Michael, Giulini, Saverio, Meda, Stefano},
journal = {Annales de l’institut Fourier},
keywords = {symmetric space; wave equation; $L^p-L^q$ estimates; estimates; Poisson semigroup; semisimple Lie group; Laplace-Beltrami operator},
language = {eng},
number = {4},
pages = {1047-1069},
publisher = {Association des Annales de l'Institut Fourier},
title = {$L^p-L^q$ estimates for functions of the Laplace-Beltrami operator on noncompact symmetric spaces. III},
url = {http://eudml.org/doc/115933},
volume = {51},
year = {2001},
}

TY - JOUR
AU - Cowling, Michael
AU - Giulini, Saverio
AU - Meda, Stefano
TI - $L^p-L^q$ estimates for functions of the Laplace-Beltrami operator on noncompact symmetric spaces. III
JO - Annales de l’institut Fourier
PY - 2001
PB - Association des Annales de l'Institut Fourier
VL - 51
IS - 4
SP - 1047
EP - 1069
AB - Let $X$ be a symmetric space of the noncompact type, with Laplace–Beltrami operator $- {\mathcal {L}}$, and let $[b,\infty )$ be the $L^2(X)$-spectrum of ${\mathcal {L}}$. For $\tau $ in ${\mathbb {C}}$ such that ${\rm Re}\,\tau \ge 0$, let ${\mathcal {P}}_\tau $ be the operator on $L^2(X)$ defined formally as ${\rm exp}\,(-\tau ({\mathcal {L}} - b)^{1/2} )$. In this paper, we obtain $L^p-L^q$ operator norm estimates for ${\mathcal {P}}_\tau $ for all $\tau $, and show that these are optimal when $\tau $ is small and when $\vert {\rm arg}\,\tau \vert $ is bounded below $\pi /2$.
LA - eng
KW - symmetric space; wave equation; $L^p-L^q$ estimates; estimates; Poisson semigroup; semisimple Lie group; Laplace-Beltrami operator
UR - http://eudml.org/doc/115933
ER -

References

top
  1. J.-Ph. Anker, Sharp estimates for some functions of the Laplacian on noncompact symmetric spaces, Duke Math. J. 65 (1992), 257-297 Zbl0764.43005MR1150587
  2. J.-Ph. Anker, L p Fourier multipliers on Riemannian symmetric spaces of the noncompact type, Ann. Math. 132 (1990), 597-628 Zbl0741.43009MR1078270
  3. J.-Ph. Anker, L. Ji, Heat kernel and Green function estimates on noncompact symmetric spaces I, II Zbl0942.43005
  4. P.H. Bérard, On the wave equation on a compact Riemannian manifold without conjugate point, Math. Z. 155 (1977), 249-276 Zbl0341.35052MR455055
  5. J. Cheeger, M. Gromov, M. Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Diff. Geom. 17 (1982), 15-53 Zbl0493.53035MR658471
  6. M.G. Cowling, S. Giulini, S. Meda, Estimates for functions of the Laplace--Beltrami operator on noncompact symmetric spaces. I, Duke Math. J. 72 (1993), 109-150 Zbl0807.43002MR1242882
  7. M.G. Cowling, S. Giulini, S. Meda, Estimates for functions of the Laplace--Beltrami operator on noncompact symmetric spaces. II, J. Lie Th. 5 (1995), 1-14 Zbl0835.43011MR1362006
  8. S. Helgason, Groups and Geometric Analysis, (1984), Academic Press, New York Zbl0543.58001MR754767
  9. S. Helgason, Wave equations on homogeneous spaces, Lie Group Representations III 1077 (1984), 254-287, Springer-Verlag Zbl0547.58037
  10. L. Hörmander, Estimates for translation invariant operators in L p spaces, Acta Math. 104 (1960), 93-140 Zbl0093.11402MR121655
  11. L. Hörmander, The Analysis of Linear Partial Differential Operators. III., 274 (1985), Springer-Verlag, Berlin Heidelberg New York Zbl0601.35001MR781536
  12. M. Taylor, L p estimates on functions of the Laplace operator, Duke Math. J. 58 (1989), 773-793 Zbl0691.58043MR1016445

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.