Reducible representations of abelian groups

Aharon Atzmon[1]

  • [1] Tel Aviv University, School of Mathematical Sciences, Tel Aviv 69978 (Israël)

Annales de l’institut Fourier (2001)

  • Volume: 51, Issue: 5, page 1407-1418
  • ISSN: 0373-0956

Abstract

top
A criterion for reducibility of certain representations of abelian groups is established. Among the applications of this criterion, we give a positive answer to the translation invariant subspace problem for weighted L p spaces on locally compact abelian groups, for even weights and 1 < p < .

How to cite

top

Atzmon, Aharon. "Reducible representations of abelian groups." Annales de l’institut Fourier 51.5 (2001): 1407-1418. <http://eudml.org/doc/115952>.

@article{Atzmon2001,
abstract = {A criterion for reducibility of certain representations of abelian groups is established. Among the applications of this criterion, we give a positive answer to the translation invariant subspace problem for weighted $L^p$ spaces on locally compact abelian groups, for even weights and $1&lt;p&lt;\infty $.},
affiliation = {Tel Aviv University, School of Mathematical Sciences, Tel Aviv 69978 (Israël)},
author = {Atzmon, Aharon},
journal = {Annales de l’institut Fourier},
keywords = {abelian groups; reducible representations; translation invariant subspaces; Abelian groups; translation; invariant subspaces},
language = {eng},
number = {5},
pages = {1407-1418},
publisher = {Association des Annales de l'Institut Fourier},
title = {Reducible representations of abelian groups},
url = {http://eudml.org/doc/115952},
volume = {51},
year = {2001},
}

TY - JOUR
AU - Atzmon, Aharon
TI - Reducible representations of abelian groups
JO - Annales de l’institut Fourier
PY - 2001
PB - Association des Annales de l'Institut Fourier
VL - 51
IS - 5
SP - 1407
EP - 1418
AB - A criterion for reducibility of certain representations of abelian groups is established. Among the applications of this criterion, we give a positive answer to the translation invariant subspace problem for weighted $L^p$ spaces on locally compact abelian groups, for even weights and $1&lt;p&lt;\infty $.
LA - eng
KW - abelian groups; reducible representations; translation invariant subspaces; Abelian groups; translation; invariant subspaces
UR - http://eudml.org/doc/115952
ER -

References

top
  1. C. Apostol, Hyperinvariant subspaces for bilateral weighted shifts, Integral Equations and Operator Theory 7 (1984) Zbl0574.47005MR802365
  2. A. Atzmon, The existence of hyperinvariant subspaces, J. Operator Theory 11 (1984), 3-40 Zbl0583.47009MR739792
  3. A. Atzmon, An operator on a Fréchet space with no common invariant subspace with its inverse, J. Funct. Anal. 55 (1984), 68-77 Zbl0552.47006MR733034
  4. A. Atzmon, Irreducible representations of abelian groups, Proceedings, Harmonic Analysis 1359 (1987), 83-92, Springer-Verlag, Berlin Zbl0681.47017
  5. A. Atzmon, Entire functions, invariant subspaces and Fourier transforms, Israel Math. Conf. Proc. 11 (1997), 37-52 Zbl0907.30029
  6. A. Atzmon, M. Sodin, Completely indecomposable operators and a uniqueness theorem of Cartwright-Levinson type, J. Funct. Anal. 169 (1999), 164-188 Zbl0945.47012MR1726751
  7. A. Atzmon, M. Sodin, Addendum to the paper ``Completely indecomposable operators and a uniqueness theorem of Cartwright-Levinson type", J. Funct. Anal. 175 (2000), 248-249 Zbl0989.47010MR1774858
  8. A. Atzmon, The existence of translation invariant subspaces of symmetric self-adjoint sequence spaces on , J. Funct. Anal. 178 (2000), 372-380 Zbl0978.47022MR1802899
  9. J. Bracconier, L'analyse harmonique dans les groupes abélien, L'enseignement Mathématique II (1956) Zbl0070.02603
  10. B. Chevreau, C.M. Pearcy, A.L. Shields, Finitely connected domains G, representations of H ( G ) , and invariant subspaces, J. Operator Theory 6 (1981), 375-405 Zbl0525.47004MR643698
  11. R. Deville, G. Godefroy, V. Zizler, Smoothness and renorming in Banach spaces, 64 (1993), Longman, Harlow Zbl0782.46019
  12. Y. Domar, On the existence of nontrivial or nonstandard translation invariant subspaces of weighted p and L p , 18th Scandinavian Congress of Mathematics (Aarhus, 1980) 11 (1981), 226-235 Zbl0468.47003
  13. Y. Domar, Translation invariant subspaces of weighted p and L p spaces, Math. Scand. 49 (1981), 133-144 Zbl0443.47030MR645094
  14. Y. Domar, Translation invariant subspaces of weighted L p , Proceeding, Commutative Harmonic Analysis 91 (1987), A.M.S., Providence, R.I. Zbl0688.47002
  15. Y. Domar, Entire functions of order 1 with bounds on both axes, Ann. Acad. Sci. Fenn. Math. 22 (1997), 339-348 Zbl0913.30017MR1469795
  16. J. Esterlé, Singular inner functions and biinvariant subspaces for disymmetric weighted shifts, J. Funct. Anal. 144 (1997), 61-104 Zbl0938.47003MR1430716
  17. J. Esterlé, A. Volberg, Sous-espaces invariant par translations bilatérales de certains espaces de Hilbert de suites quasianalytiquement pondérées, C.R. Acad. Sci. Paris, Série I 326 (1998), 295-300 Zbl0919.47009MR1648437
  18. J. Esterlé, A. Volberg, Analytic left-invariant subspaces of weighted Hilbert spaces of sequences Zbl1002.47001
  19. J. Esterlé, A. Volberg, Asymptotically holomorphic functions and translation invariant subspaces of weighted Hilbert spaces of sequences Zbl1059.47034
  20. R. Gellar, D. Herrero, Hyperinvariant subspaces of bilateral weighted shifts, Indiana Univ. Math. J. 23 (1974), 771-790 Zbl0253.46128MR331083
  21. G. Köthe, Topological vector spaces I, (1969), Springer-Verlag, New York Zbl0179.17001
  22. J. Lindenstrauss, On nonseparable reflexive Banach spaces, Bull. Amer. Math. Soc. 72 (1966), 967-970 Zbl0156.36403MR205040
  23. C.J. Read, A solution to the invariant subspace problem in the space 1 , Bull. London Math. Soc. 17 (1985), 305-317 Zbl0574.47006MR806634
  24. A.L. Shields, Weighted shift operators and analytic function theory, Topics in Operator Theory 13 (1974), AMS Math. Surveys, Providence, R.I. Zbl0303.47021

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.