Asymptotically holomorphic functions and translation invariant subspaces of weighted Hilbert spaces of sequences

Jean Esterle; Alexander Volberg

Annales scientifiques de l'École Normale Supérieure (2002)

  • Volume: 35, Issue: 2, page 185-230
  • ISSN: 0012-9593

How to cite

top

Esterle, Jean, and Volberg, Alexander. "Asymptotically holomorphic functions and translation invariant subspaces of weighted Hilbert spaces of sequences." Annales scientifiques de l'École Normale Supérieure 35.2 (2002): 185-230. <http://eudml.org/doc/82569>.

@article{Esterle2002,
author = {Esterle, Jean, Volberg, Alexander},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {weighted shifts; translation invariant subspaces; singular inner functions},
language = {eng},
number = {2},
pages = {185-230},
publisher = {Elsevier},
title = {Asymptotically holomorphic functions and translation invariant subspaces of weighted Hilbert spaces of sequences},
url = {http://eudml.org/doc/82569},
volume = {35},
year = {2002},
}

TY - JOUR
AU - Esterle, Jean
AU - Volberg, Alexander
TI - Asymptotically holomorphic functions and translation invariant subspaces of weighted Hilbert spaces of sequences
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2002
PB - Elsevier
VL - 35
IS - 2
SP - 185
EP - 230
LA - eng
KW - weighted shifts; translation invariant subspaces; singular inner functions
UR - http://eudml.org/doc/82569
ER -

References

top
  1. [1] Abkar A., Hedenmalm H., Invariant subspaces on multiply connected domains, Publ. Math.42 (1998) 521-557. Zbl0927.47002MR1676042
  2. [2] Aleman A., Richter S., Ross W.T., Pseudocontinuations and the Backward Shift, Indiana Math. J.47 (1) (1998) 223-276. Zbl0907.46019MR1631561
  3. [3] Aleman A., Richter S., Sundberg C., Beurling's theorem for the Bergman space, Acta Math.177 (1996) 275-310. Zbl0886.30026MR1440934
  4. [4] Apostol C., Hyperinvariant subspaces for bilateral weighted shifts, J. Int. Eq. Op. Theory7 (1984) 1-9. Zbl0574.47005MR802365
  5. [5] Atzmon A., An operator without invariant subspace on a nuclear Fréchet space, Ann. of Math.117 (1983) 660-694. Zbl0553.47002MR701260
  6. [6] Atzmon A., An operator on a Fréchet space with no common invariant subspace with its inverse, J. Funct. Anal.55 (1984) 68-77. Zbl0552.47006MR733034
  7. [7] Atzmon A., Nuclear Fréchet spaces of entire functions with transitive differentiation, J. Analyse Math.60 (1993) 1-19. Zbl0801.46004MR1253226
  8. [8] Atzmon A., Entire functions, invariant subspaces and Fourier transforms, Israel Math. Conference Proceedings11 (1997) 37-52. Zbl0907.30029MR1476702
  9. [9] Atzmon A., Weighted Lp spaces of entire functions, Fourier transforms and invariant subspaces, Preprint. 
  10. [10] Atzmon A., The existence of self-adjoint translation invariant subspaces on symmetric self-adjoint sequence spaces on Z, J. Funct. Anal.178 (2000) 372-380. Zbl0978.47022MR1802899
  11. [11] Atzmon A., Sodin M., Completely indecomposable operators and a uniqueness theorem of Cartwright–Levinson type, J. Funct. Anal.169 (1999) 164-188. Zbl0945.47012MR1726751
  12. [12] Beurling A., Mittag–Leffler lectures in Complex Analysis (1977–78); Collected works of A. Beurling, 361–443. 
  13. [13] Beurling A., Malliavin P., On Fourier transforms of measures with compact support, Acta Math.107 (1962) 291-309. Zbl0127.32601MR147848
  14. [14] Borichev A., Boundary uniqueness theorems for almost analytic functions, and asymmetric algebras of sequences, Math. USSR Sb.64 (2) (1989) 323-338. Zbl0677.30003MR959485
  15. [15] Borichev A., Invariant subspaces of given index in Banach spaces of analytic functions, J. Reine Angew. Math.505 (1998) 23-44. Zbl0923.47003MR1662236
  16. [16] Borichev A., Hedenmalm H., Completeness of translates in weighted spaces on the half-line, Acta Math.174 (1995) 1-84. Zbl0830.46020MR1310845
  17. [17] Borichev A., Hedenmalm H., Volberg A., Large Bergman spaces: invertibility, cyclicity, and subspaces of arbitrary index, Preprint. Zbl1065.46021MR2027638
  18. [18] Borichev A., Volberg A., Uniqueness theorems for almost analytic functions, Leningrad Math. J.1 (1990) 157-190. Zbl0725.30038MR1015338
  19. [19] Bourgain J., A problem of Douglas and Rudin of factorization, Pacific J. Math.121 (1) (1986) 47-50. Zbl0609.30035MR815031
  20. [20] Brown S., Chevreau B., Pearcy C., On the structure of contraction operators II, J. Funct. Anal.76 (1988) 269-293. Zbl0641.47013MR923043
  21. [21] Domar Y., Translation invariant subspaces of weighted ℓp and Lp spaces, Math. Scand.49 (1981) 133-144. Zbl0465.47020MR645094
  22. [22] Domar Y., Entire functions of order ≤1, with bounds on both axes, Ann. Acad. Sci. Fenn.22 (1997) 339-348. Zbl0913.30017
  23. [23] Dynkin E.M., Functions with a given estimate for ∂f/∂ z ¯ andN. Levinson's theorem, Math. Sb.81 (1972) 182-190. Zbl0263.30027
  24. [24] El Fallah O., Kellay K., Sous-espaces biinvariants pour certains shifts à poids, Ann. Inst. Fourier48 (1998) 1543-1588. Zbl0919.47020MR1662275
  25. [25] Esterle J., Singular inner functions and biinvariants subspaces for dissymmetric weighted shifts, J. Funct. Anal.44 (1997) 64-104. Zbl0938.47003MR1430716
  26. [26] Esterle J., Countable inductive limits of Fréchet algebras, J. Ann. Math.71 (1997) 195-204. Zbl0905.46032MR1454251
  27. [27] Esterle J., Exact factorization never holds for Banach spaces of sequences, St. Petersburg Math. J.12 (2001) 869-874. Zbl1013.46016MR1812948
  28. [28] Esterle J., Apostol's bilateral weighted shifts are hyperreflexive, Operator Theory: Advances and Applications127 (2001) 243-266. Zbl0994.47009MR1902804
  29. [29] Esterle J., Gay R., Product of hyperfunctions on the circle, Israel J. Math.116 (2000) 271-283. Zbl0964.32005MR1759409
  30. [30] Esterle J., Volberg A., Sous-espaces invariants par translation de certains espaces de Hilbert de suites quasi-analytiquement pondérées, C. R. Acad. Sci. Paris, Ser. A326 (1998) 295-300. Zbl0919.47009MR1648437
  31. [31] Esterle J., Volberg A., Analytic left-invariant subspaces of weighted Hilbert spaces of sequences, J. Op. Theory45 (2001) 265-301. Zbl1002.47001MR1841097
  32. [32] Harlouchet I., Trace de Cauchy pour certaines fonctions localement intégrables sur un ouvert borné de C, submitted. Zbl1122.30026
  33. [33] Harlouchet I., Idéaux fermés de certaines algèbres de Beurling quasi-analytiques sur le cercle unité, J. Math. Pures Appl.79 (2000) 863-899. Zbl1040.30028MR1792728
  34. [34] Hedenmalm H., A comparison between the closed modular ideals of ℓ1(ω) and L1(ω), Math. Scand.58 (1986) 275-300. Zbl0654.46056
  35. [35] Hedenmalm H., Bounded analytic functions and closed ideals, J. Anal. Math.48 (1987) 142-166. Zbl0633.46055MR910006
  36. [36] Hedenmalm H., Korenblum B., Zhu K., The Theory of Bergman Spaces, GTM 199, Springer-Verlag, 2000. Zbl0955.32003MR1758653
  37. [37] Hedenmalm H., Volberg A., Zero-free invariant subspaces in weighted Bergman spaces with critical topology, Preprint. 
  38. [38] Helson H., Lectures on Invariant Subspaces, Academic Press, 1954. Zbl0119.11303MR171178
  39. [39] Hitt D., Invariant subspaces of H2 of an annulus, Pacific J. Math.134 (1) (1988) 101-120. Zbl0662.30035MR953502
  40. [40] Kellay K., Fonctions intérieures et vecteurs bicycliques, Archiv. der Math.77 (2001) 253-264. Zbl1021.47005MR1865867
  41. [41] Korenblum B., Outer functions and cyclic elements in Bergman spaces, J. Funct. Anal.115 (1993) 104-118. Zbl0780.30028MR1228143
  42. [42] Matsaev V.I., Mogulskii E.Z., A division theorem for analytic functions with a given majorant and some of its applications, J. Soviet Math.14 (1980) 1078-1091. Zbl0442.30050
  43. [43] Nikolskii N., Selected problems in weighted approximations and spectral analysis, Proc. Steklov Inst. Math.120 (1974). Zbl0342.41028
  44. [44] Nikolskii N., Treatise on the Shift Operator, Springer-Verlag, Berlin, 1986. Zbl0587.47036MR827223
  45. [45] Nikolskii N., Yngve Domar's forty years in harmonic analysis, Festschrift in honour of Lennart Carleson and Yngve Domar (Uppsala, 1993), Acta Univ. Upsaliensis58 (1995) 45-78. Zbl0845.43001MR1351999
  46. [46] Sarason D., The Hp-spaces of an annulus, Mem. Amer. Math. Soc.56 (1965). Zbl0127.07002MR188824
  47. [47] Sarason D., Nearly invariant subspaces for the backward shift, Operator Theory Adv. Appl.35 (1988) 481-493. Zbl0687.47003MR1017680
  48. [48] Shields A., Weighted shift operators and analytic function theory, in: Pearcy C. (Ed.), Topics in Operator Theory, Amer. Math. Soc. Math. Surveys, 13, 1974, pp. 49-128. Zbl0303.47021MR361899
  49. [49] Volberg A., The logarithm of an almost analytic function is summable, Soviet Math. Dokl.26 (1982) 238-243. Zbl0518.30034
  50. [50] Volberg A., Asymptotically holomorphic functions and certain of their applications, Proc. I.C.M. KyotoII (1990) 959-967. Zbl0744.30038MR1159281
  51. [51] Volberg A., Joricke B., Summability of the logarithm of an almost analytic function and a generalization of the Levinson–Cartwright theorem, Math. USSR Sb.58 (1987) 337-349. Zbl0644.30020
  52. [52] Wiener N., Tauberian theorems, Ann. of Math.33 (1932) 1-100. Zbl0004.05905MR1503035JFM58.0226.02
  53. [53] Yakubovitch D., Invariant subspaces of the operator of multiplication by z in the space Ep in a multiply connected domain, LOMI, Stek. Akad. Nauk. SSSR178 (1989) 166-183. Zbl0722.47031MR1037771

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.