On vanishing inflection points of plane curves
- [1] Université Paris VII, UFR de Mathématiques, Case 7012, 2 place Jussieu, 75251 Paris Cedex 05 (France)
Annales de l’institut Fourier (2002)
- Volume: 52, Issue: 3, page 849-880
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGaray, Mauricio. "On vanishing inflection points of plane curves." Annales de l’institut Fourier 52.3 (2002): 849-880. <http://eudml.org/doc/115997>.
@article{Garay2002,
abstract = {We study the local behaviour of inflection points of families of plane curves in the
projective plane. We develop normal forms and versal deformation concepts for holomorphic
function germs $f : (\{\mathbb \{C\}\}^2,0)\longrightarrow (\{\mathbb \{C\}\},0)$ which take into account
the inflection points of the fibres of $f$. We give a classification of such function-
germs which is a projective analog of Arnold’s A,D,E classification. We compute the
versal deformation with respect to inflections of Morse function-germs.},
affiliation = {Université Paris VII, UFR de Mathématiques, Case 7012, 2 place Jussieu, 75251 Paris Cedex 05 (France)},
author = {Garay, Mauricio},
journal = {Annales de l’institut Fourier},
keywords = {Plücker formulas; normal forms; inflection points; bifurcation diagrams; projective geometry},
language = {eng},
number = {3},
pages = {849-880},
publisher = {Association des Annales de l'Institut Fourier},
title = {On vanishing inflection points of plane curves},
url = {http://eudml.org/doc/115997},
volume = {52},
year = {2002},
}
TY - JOUR
AU - Garay, Mauricio
TI - On vanishing inflection points of plane curves
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 3
SP - 849
EP - 880
AB - We study the local behaviour of inflection points of families of plane curves in the
projective plane. We develop normal forms and versal deformation concepts for holomorphic
function germs $f : ({\mathbb {C}}^2,0)\longrightarrow ({\mathbb {C}},0)$ which take into account
the inflection points of the fibres of $f$. We give a classification of such function-
germs which is a projective analog of Arnold’s A,D,E classification. We compute the
versal deformation with respect to inflections of Morse function-germs.
LA - eng
KW - Plücker formulas; normal forms; inflection points; bifurcation diagrams; projective geometry
UR - http://eudml.org/doc/115997
ER -
References
top- V.I. Arnold, Normal forms for functions near degenerate critical points, the Weyl groups , , and Lagrangian singularities, Funct. Anal. Appl. 6 (1972), 254-272 Zbl0278.57011MR356124
- V.I. Arnold, Mathematical methods of classical mechanics, (1974 ; 1978), Springer ; English transl. Zbl0386.70001
- V.I. Arnold, Wave front evolution and the equivariant Morse lemma, Comm. Pure Appl. Math. 29 (1976), 557-582 Zbl0343.58003MR436200
- V.I. Arnold, Vanishing inflexions, Funct. Anal. Appl. 18 (1984), 51-52 Zbl0565.32009MR745699
- V.I. Arnold, V.I. Vassiliev, V.V. Goryunov, O.V. Lyashko, Singularity theory I, dynamical systems VI, VINITI, Moscow (1993), Springer-Verlag ; English transl.
- J. Damon, The unfolding and determinacy theorems for subgroups of and , Memoirs of the AMS vol. 50 (1984) Zbl0545.58010MR748971
- M. Garay, Théorie des points d'aplatissement évanescents des courbes planes et spatiales, (2001)
- M. Garay, On simple families of functions, (2002)
- V.V. Goryunov, Vector fields and functions on discriminants of complete intersections and bifurcation diagrams of projections, Funct. Anal. Appl. 15 (1981), 77-82 Zbl0507.58010
- P. Griffiths, J. Harris, Principles of algebraic geometry, (1978), Wiley Interscience Zbl0408.14001MR507725
- M.E. Kazarian, Singularities of the boundary of fundamental systems, flattening of projective curves, and Schubert cells, Itogi Nauli Tekh., Ser. Sovrem Probl. Math., Noviejshie dostizh. 33 (1988), 215-234 Zbl0738.57016
- M.E. Kazarian, Flattening of projective curves, singularities of Schubert stratifications of Grassmann and flag varieties, bifurcations of Weierstrass points of algebraic curves, Usp. Mat. Nauk 46 (1961), 79-119 Zbl0783.32015
- F. Klein, Development of mathematics in the XIXth century, Lie groups history, frontiers and applications, vol. 9 (1979), Math. Sci. Press, Massachussets Zbl0411.01009
- J. Martinet, Singularities of smooth functions and maps, vol. 58 (1982), Cambridge University Press Zbl0522.58006MR671585
- J. Mather, Stability of mappings, I, Ann. of Math. 87 (1968) Zbl0159.24902MR232401
- J. Plücker, System der Analytischen Geometrie, Gessam. Wissen. Abhand., vol. Band 1 ; vol. 2 (1834, 1898), B.G. Teubner
- R. Piene, Numerical characters of a curve in projective n-space, Real and complex singularities (1977), 475-495 Zbl0375.14017
- G.N. Tyurina, Locally semi-universal plane deformations of isolated singularities in complex space, Math. USSR Izv. 32 (1968), 967-999 Zbl0209.11301
- R. Uribe, Singularités symplectiques et de contact en géométrie différentielle des courbes et des surfaces, (2001)
- V.M. Zakalyukin, Lagrangian and Legendrian singularities, Funct. Anal. Appl. 10 (1976) Zbl0331.58007
- M.E. Kazarian, Bifurcations of flattening and Schubert cells, (1990), 145-156, AMS
- M.E. Kazarian, Singularities of the boundary of fundamental systems, flattening of projective curves, and Schubert cells, J. Soviet Math. (English transl.) 52 (1990), 3338-3349 Zbl0900.57004
- M.E. Kazarian, Flattening of projective curves, singularities of Schubert stratifications of Grassmann and flag varieties, bifurcations of Weierstrass points of algebraic curves, Russ. Math. Surveys (English transl.) 46 (1992), 91-136 Zbl0783.32015
- J. Mather, Stability of mappings, III, Pub. Sci. IHES 35 (1969) Zbl0159.25001
- J. Mather, Stability of mappings, II, Ann. of Math. 89 (1969) Zbl0177.26002MR259953
- J. Mather, Stability of mappings, IV, Pub. Sci. IHES 37 (1970) Zbl0202.55102
- J. Mather, Stability of mappings, V, Adv. in Math. 4 (1970) Zbl0207.54303MR275461
- J. Mather, Stability of mappings, VI, Lecture Notes in Math. 192 (1971) Zbl0211.56105MR293670
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.