On vanishing inflection points of plane curves

Mauricio Garay[1]

  • [1] Université Paris VII, UFR de Mathématiques, Case 7012, 2 place Jussieu, 75251 Paris Cedex 05 (France)

Annales de l’institut Fourier (2002)

  • Volume: 52, Issue: 3, page 849-880
  • ISSN: 0373-0956

Abstract

top
We study the local behaviour of inflection points of families of plane curves in the projective plane. We develop normal forms and versal deformation concepts for holomorphic function germs f : ( 2 , 0 ) ( , 0 ) which take into account the inflection points of the fibres of f . We give a classification of such function- germs which is a projective analog of Arnold’s A,D,E classification. We compute the versal deformation with respect to inflections of Morse function-germs.

How to cite

top

Garay, Mauricio. "On vanishing inflection points of plane curves." Annales de l’institut Fourier 52.3 (2002): 849-880. <http://eudml.org/doc/115997>.

@article{Garay2002,
abstract = {We study the local behaviour of inflection points of families of plane curves in the projective plane. We develop normal forms and versal deformation concepts for holomorphic function germs $f : (\{\mathbb \{C\}\}^2,0)\longrightarrow (\{\mathbb \{C\}\},0)$ which take into account the inflection points of the fibres of $f$. We give a classification of such function- germs which is a projective analog of Arnold’s A,D,E classification. We compute the versal deformation with respect to inflections of Morse function-germs.},
affiliation = {Université Paris VII, UFR de Mathématiques, Case 7012, 2 place Jussieu, 75251 Paris Cedex 05 (France)},
author = {Garay, Mauricio},
journal = {Annales de l’institut Fourier},
keywords = {Plücker formulas; normal forms; inflection points; bifurcation diagrams; projective geometry},
language = {eng},
number = {3},
pages = {849-880},
publisher = {Association des Annales de l'Institut Fourier},
title = {On vanishing inflection points of plane curves},
url = {http://eudml.org/doc/115997},
volume = {52},
year = {2002},
}

TY - JOUR
AU - Garay, Mauricio
TI - On vanishing inflection points of plane curves
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 3
SP - 849
EP - 880
AB - We study the local behaviour of inflection points of families of plane curves in the projective plane. We develop normal forms and versal deformation concepts for holomorphic function germs $f : ({\mathbb {C}}^2,0)\longrightarrow ({\mathbb {C}},0)$ which take into account the inflection points of the fibres of $f$. We give a classification of such function- germs which is a projective analog of Arnold’s A,D,E classification. We compute the versal deformation with respect to inflections of Morse function-germs.
LA - eng
KW - Plücker formulas; normal forms; inflection points; bifurcation diagrams; projective geometry
UR - http://eudml.org/doc/115997
ER -

References

top
  1. V.I. Arnold, Normal forms for functions near degenerate critical points, the Weyl groups A k , D k , E k and Lagrangian singularities, Funct. Anal. Appl. 6 (1972), 254-272 Zbl0278.57011MR356124
  2. V.I. Arnold, Mathematical methods of classical mechanics, (1974 ; 1978), Springer ; English transl. Zbl0386.70001
  3. V.I. Arnold, Wave front evolution and the equivariant Morse lemma, Comm. Pure Appl. Math. 29 (1976), 557-582 Zbl0343.58003MR436200
  4. V.I. Arnold, Vanishing inflexions, Funct. Anal. Appl. 18 (1984), 51-52 Zbl0565.32009MR745699
  5. V.I. Arnold, V.I. Vassiliev, V.V. Goryunov, O.V. Lyashko, Singularity theory I, dynamical systems VI, VINITI, Moscow (1993), Springer-Verlag ; English transl. 
  6. J. Damon, The unfolding and determinacy theorems for subgroups of 𝒜 and 𝒦 , Memoirs of the AMS vol. 50 (1984) Zbl0545.58010MR748971
  7. M. Garay, Théorie des points d'aplatissement évanescents des courbes planes et spatiales, (2001) 
  8. M. Garay, On simple families of functions, (2002) 
  9. V.V. Goryunov, Vector fields and functions on discriminants of complete intersections and bifurcation diagrams of projections, Funct. Anal. Appl. 15 (1981), 77-82 Zbl0507.58010
  10. P. Griffiths, J. Harris, Principles of algebraic geometry, (1978), Wiley Interscience Zbl0408.14001MR507725
  11. M.E. Kazarian, Singularities of the boundary of fundamental systems, flattening of projective curves, and Schubert cells, Itogi Nauli Tekh., Ser. Sovrem Probl. Math., Noviejshie dostizh. 33 (1988), 215-234 Zbl0738.57016
  12. M.E. Kazarian, Flattening of projective curves, singularities of Schubert stratifications of Grassmann and flag varieties, bifurcations of Weierstrass points of algebraic curves, Usp. Mat. Nauk 46 (1961), 79-119 Zbl0783.32015
  13. F. Klein, Development of mathematics in the XIXth century, Lie groups history, frontiers and applications, vol. 9 (1979), Math. Sci. Press, Massachussets Zbl0411.01009
  14. J. Martinet, Singularities of smooth functions and maps, vol. 58 (1982), Cambridge University Press Zbl0522.58006MR671585
  15. J. Mather, Stability of C mappings, I, Ann. of Math. 87 (1968) Zbl0159.24902MR232401
  16. J. Plücker, System der Analytischen Geometrie, Gessam. Wissen. Abhand., vol. Band 1 ; vol. 2 (1834, 1898), B.G. Teubner 
  17. R. Piene, Numerical characters of a curve in projective n-space, Real and complex singularities (1977), 475-495 Zbl0375.14017
  18. G.N. Tyurina, Locally semi-universal plane deformations of isolated singularities in complex space, Math. USSR Izv. 32 (1968), 967-999 Zbl0209.11301
  19. R. Uribe, Singularités symplectiques et de contact en géométrie différentielle des courbes et des surfaces, (2001) 
  20. V.M. Zakalyukin, Lagrangian and Legendrian singularities, Funct. Anal. Appl. 10 (1976) Zbl0331.58007
  21. M.E. Kazarian, Bifurcations of flattening and Schubert cells, (1990), 145-156, AMS 
  22. M.E. Kazarian, Singularities of the boundary of fundamental systems, flattening of projective curves, and Schubert cells, J. Soviet Math. (English transl.) 52 (1990), 3338-3349 Zbl0900.57004
  23. M.E. Kazarian, Flattening of projective curves, singularities of Schubert stratifications of Grassmann and flag varieties, bifurcations of Weierstrass points of algebraic curves, Russ. Math. Surveys (English transl.) 46 (1992), 91-136 Zbl0783.32015
  24. J. Mather, Stability of C mappings, III, Pub. Sci. IHES 35 (1969) Zbl0159.25001
  25. J. Mather, Stability of C mappings, II, Ann. of Math. 89 (1969) Zbl0177.26002MR259953
  26. J. Mather, Stability of C mappings, IV, Pub. Sci. IHES 37 (1970) Zbl0202.55102
  27. J. Mather, Stability of C ä mappings, V, Adv. in Math. 4 (1970) Zbl0207.54303MR275461
  28. J. Mather, Stability of C mappings, VI, Lecture Notes in Math. 192 (1971) Zbl0211.56105MR293670

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.