# Computing explicitly topological sequence entropy: the unimodal case

• [1] Universidad de Murcia, Departamento de Matemáticas, Campus de Espinardo, 30100 Murcia (Espagne)
• [2] Universidad Politécnica de Cartagena, Departamento de Matemática Aplicada, Paseo de Alfonso XIII 34-36, 30203 Cartagena (Espagne)
• Volume: 52, Issue: 4, page 1093-1133
• ISSN: 0373-0956

top

## Abstract

top
Let $W\left(I\right)$ denote the family of continuous maps $f$ from an interval $I=\left[a,b\right]$ into itself such that (1) $f\left(a\right)=f\left(b\right)\in \left\{a,b\right\}$; (2) they consist of two monotone pieces; and (3) they have periodic points of periods exactly all powers of $2$. The main aim of this paper is to compute explicitly the topological sequence entropy ${h}_{D}\left(f\right)$ of any map $f\in W\left(I\right)$ respect to the sequence $D={\left({2}^{m-1}\right)}_{m=1}^{\infty }$.

## How to cite

top

Jiménez López, Victor, and Cánovas Peña, Jose Salvador. "Computing explicitly topological sequence entropy: the unimodal case." Annales de l’institut Fourier 52.4 (2002): 1093-1133. <http://eudml.org/doc/116005>.

@article{JiménezLópez2002,
abstract = {Let $W(I)$ denote the family of continuous maps $f$ from an interval $I=[a,b]$ into itself such that (1) $f(a)=f(b)\in \lbrace a,b\rbrace$; (2) they consist of two monotone pieces; and (3) they have periodic points of periods exactly all powers of $2$. The main aim of this paper is to compute explicitly the topological sequence entropy $h_D(f)$ of any map $f\in W(I)$ respect to the sequence $D=(2^\{m-1\})_\{m=1\}^\infty$.},
affiliation = {Universidad de Murcia, Departamento de Matemáticas, Campus de Espinardo, 30100 Murcia (Espagne); Universidad Politécnica de Cartagena, Departamento de Matemática Aplicada, Paseo de Alfonso XIII 34-36, 30203 Cartagena (Espagne)},
author = {Jiménez López, Victor, Cánovas Peña, Jose Salvador},
journal = {Annales de l’institut Fourier},
keywords = {map of type $2^\infty$; topological sequence entropy; unimodal map; map of type },
language = {eng},
number = {4},
pages = {1093-1133},
publisher = {Association des Annales de l'Institut Fourier},
title = {Computing explicitly topological sequence entropy: the unimodal case},
url = {http://eudml.org/doc/116005},
volume = {52},
year = {2002},
}

TY - JOUR
AU - Jiménez López, Victor
AU - Cánovas Peña, Jose Salvador
TI - Computing explicitly topological sequence entropy: the unimodal case
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 4
SP - 1093
EP - 1133
AB - Let $W(I)$ denote the family of continuous maps $f$ from an interval $I=[a,b]$ into itself such that (1) $f(a)=f(b)\in \lbrace a,b\rbrace$; (2) they consist of two monotone pieces; and (3) they have periodic points of periods exactly all powers of $2$. The main aim of this paper is to compute explicitly the topological sequence entropy $h_D(f)$ of any map $f\in W(I)$ respect to the sequence $D=(2^{m-1})_{m=1}^\infty$.
LA - eng
KW - map of type $2^\infty$; topological sequence entropy; unimodal map; map of type
UR - http://eudml.org/doc/116005
ER -

## References

top
1. R.L. Adler, A.G. Konheim, M.H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309-319 Zbl0127.13102MR175106
2. F. Balibrea, J.S. Cánovas Peña, Commutativity and non-commutativity of topological sequence entropy, Ann. Inst. Fourier 49 (1999), 1693-1709 Zbl0990.37010MR1723832
3. F. Balibrea, V. Jiménez López, The measure of scrambled sets: a survey, Acta Univ. Mathaei Belii Nat. Sci., Ser. Math. 7 (1999), 3-11 Zbl0967.37021MR1766951
4. R. Bowen, J. Franks, The periodic points of maps of the circle and the interval, Topology 15 (1976), 337-342 Zbl0346.58010MR431282
5. H. Bruin, An algorithm to compute the topological entropy of a unimodal map, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 9 (1999), 1881-1882 Zbl1089.37515MR1728747
6. J.S. Cánovas, On topological sequence entropy of piecewise monotonic mappings, Bull. Austral. Math. Soc. 62 (2000), 21-28 Zbl0965.37033MR1775883
7. N. Franzová, J. Smital, Positive sequence topological entropy characterizes chaotic maps, Proc. Amer. Math. Soc. 112 (1991), 1083-1086 Zbl0735.26005MR1062387
8. T.N.T. Goodman, Topological sequence entropy, Proc. London Math. Soc. 29 (1974), 331-350 Zbl0293.54043MR356009
9. W.H. Gottschalk, G.A. Hedlund, Topological dynamics, (1955), American Mathematical Society, Providence Zbl0067.15204MR74810
10. R. Hric, Topological sequence entropy for maps of the interval, Proc. Amer. Math. Soc. 127 (1999), 2045-2052 Zbl0923.26004MR1487372
11. V. Jiménez López, Large chaos in smooth functions of zero topological entropy, Bull. Austral. Math. Soc. 46 (1992), 271-285 Zbl0758.26004MR1183783
12. V. Jiménez López, An explicit description of all scrambled sets of weakly unimodal functions of type ${2}^{\infty }$, Real. Anal. Exchange 21 (1995/1996), 664-688 Zbl0879.58044MR1407279
13. V. Jiménez López, L. Snoha, There are no piecewise linear maps of type ${2}^{\infty }$, Trans. Amer. Math. Soc. 349 (1997), 1377-1387 Zbl0947.37025MR1389785
14. M. Kutcha, J. SmÍtal, Two-point scrambled set implies chaos, ECIT 87 (Caldes de Malavella, Spain, 1987) (1989), 427-430, World Scientific Publishing, Teaneck
15. Z.L. Leibenzon, Investigation of some properties of a continuous pointwise mapping of an interval onto itself, having an application in the theory of nonlinear oscilations, Prikl. Mat. i Mekh (Russian) 17 (1953), 351-360 MR55429
16. T.Y. Li, J.A. Yorke, Period three implies chaos, Amer. Math. Monthly 82 (1975), 985-992 Zbl0351.92021MR385028
17. M. Martens, W. de Melo, S. van Strien, Julia-Fatou-Sullivan theory for real one-dimensional dynamics, Acta Math. 168 (1992), 271-318 Zbl0761.58007MR1161268
18. M. Martens, C. Tresser, Forcing of periodic orbits for interval maps and renormalization of piecewise affine maps, Proc. Amer. Math. Soc. 124 (1996), 2863-2870 Zbl0864.58035MR1343712
19. J. Milnor, W. Thurston, On iterated maps of the interval, Dynamical systems (College Park, MD, 1986/1987) 1342 (1988), 465-563, Springer, Berlin-New York Zbl0664.58015
20. M. Misiurewicz, Horseshoes for mappings of an interval, Bull. Acad. Pol. Sci., Sér. Sci. Math. 27 (1979), 167-169 Zbl0459.54031MR542778
21. M. Misiurewicz, J. Smital, Smooth chaotic functions with zero topological entropy, Ergodic Theory Dynam. Systems 8 (1988), 421-424 Zbl0689.58028MR961740
22. M. Misiurewicz, W. Szlenk, Entropy of piecewise monotone mappings, Studia Math. 67 (1980), 45-63 Zbl0445.54007MR579440
23. J. Rothschild, On the computation of topological entropy, (1971)
24. A.N. Sharkovsky, Coexistence of cycles of a continuous map of the line into itself, Ukrain. Mat. Ž 16 (1964), 61-71 MR159905
25. P. Walters, An introduction to ergodic theory, (1982), Springer-Verlag, New York-Berlin Zbl0475.28009MR648108
26. A.N. Sharkovsky, S.F. Kolyada, A.G. Sivak, Dynamics of one-dimensional maps, (1997), Kluwer, Dordrecht Zbl0881.58020
27. A.N. Sharkovsky, Coexistence of cycles of a continuous map of the line into itself, Internat. J. Bifur. Chaos Appl. Sci. Engrg. (English transl.) 5 (1995), 1263-1273 Zbl0890.58012MR1361914

## NotesEmbed?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.