Computing explicitly topological sequence entropy: the unimodal case
Victor Jiménez López[1]; Jose Salvador Cánovas Peña[2]
- [1] Universidad de Murcia, Departamento de Matemáticas, Campus de Espinardo, 30100 Murcia (Espagne)
- [2] Universidad Politécnica de Cartagena, Departamento de Matemática Aplicada, Paseo de Alfonso XIII 34-36, 30203 Cartagena (Espagne)
Annales de l’institut Fourier (2002)
- Volume: 52, Issue: 4, page 1093-1133
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topJiménez López, Victor, and Cánovas Peña, Jose Salvador. "Computing explicitly topological sequence entropy: the unimodal case." Annales de l’institut Fourier 52.4 (2002): 1093-1133. <http://eudml.org/doc/116005>.
@article{JiménezLópez2002,
abstract = {Let $W(I)$ denote the family of continuous maps $f$ from an interval $I=[a,b]$ into
itself such that (1) $f(a)=f(b)\in \lbrace a,b\rbrace $; (2) they consist of two monotone pieces; and
(3) they have periodic points of periods exactly all powers of $2$. The main aim of this
paper is to compute explicitly the topological sequence entropy $h_D(f)$ of any map $f\in W(I)$ respect to the sequence $D=(2^\{m-1\})_\{m=1\}^\infty $.},
affiliation = {Universidad de Murcia, Departamento de Matemáticas, Campus de Espinardo, 30100 Murcia (Espagne); Universidad Politécnica de Cartagena, Departamento de Matemática Aplicada, Paseo de Alfonso XIII 34-36, 30203 Cartagena (Espagne)},
author = {Jiménez López, Victor, Cánovas Peña, Jose Salvador},
journal = {Annales de l’institut Fourier},
keywords = {map of type $2^\infty $; topological sequence entropy; unimodal map; map of type },
language = {eng},
number = {4},
pages = {1093-1133},
publisher = {Association des Annales de l'Institut Fourier},
title = {Computing explicitly topological sequence entropy: the unimodal case},
url = {http://eudml.org/doc/116005},
volume = {52},
year = {2002},
}
TY - JOUR
AU - Jiménez López, Victor
AU - Cánovas Peña, Jose Salvador
TI - Computing explicitly topological sequence entropy: the unimodal case
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 4
SP - 1093
EP - 1133
AB - Let $W(I)$ denote the family of continuous maps $f$ from an interval $I=[a,b]$ into
itself such that (1) $f(a)=f(b)\in \lbrace a,b\rbrace $; (2) they consist of two monotone pieces; and
(3) they have periodic points of periods exactly all powers of $2$. The main aim of this
paper is to compute explicitly the topological sequence entropy $h_D(f)$ of any map $f\in W(I)$ respect to the sequence $D=(2^{m-1})_{m=1}^\infty $.
LA - eng
KW - map of type $2^\infty $; topological sequence entropy; unimodal map; map of type
UR - http://eudml.org/doc/116005
ER -
References
top- R.L. Adler, A.G. Konheim, M.H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309-319 Zbl0127.13102MR175106
- F. Balibrea, J.S. Cánovas Peña, Commutativity and non-commutativity of topological sequence entropy, Ann. Inst. Fourier 49 (1999), 1693-1709 Zbl0990.37010MR1723832
- F. Balibrea, V. Jiménez López, The measure of scrambled sets: a survey, Acta Univ. Mathaei Belii Nat. Sci., Ser. Math. 7 (1999), 3-11 Zbl0967.37021MR1766951
- R. Bowen, J. Franks, The periodic points of maps of the circle and the interval, Topology 15 (1976), 337-342 Zbl0346.58010MR431282
- H. Bruin, An algorithm to compute the topological entropy of a unimodal map, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 9 (1999), 1881-1882 Zbl1089.37515MR1728747
- J.S. Cánovas, On topological sequence entropy of piecewise monotonic mappings, Bull. Austral. Math. Soc. 62 (2000), 21-28 Zbl0965.37033MR1775883
- N. Franzová, J. Smital, Positive sequence topological entropy characterizes chaotic maps, Proc. Amer. Math. Soc. 112 (1991), 1083-1086 Zbl0735.26005MR1062387
- T.N.T. Goodman, Topological sequence entropy, Proc. London Math. Soc. 29 (1974), 331-350 Zbl0293.54043MR356009
- W.H. Gottschalk, G.A. Hedlund, Topological dynamics, (1955), American Mathematical Society, Providence Zbl0067.15204MR74810
- R. Hric, Topological sequence entropy for maps of the interval, Proc. Amer. Math. Soc. 127 (1999), 2045-2052 Zbl0923.26004MR1487372
- V. Jiménez López, Large chaos in smooth functions of zero topological entropy, Bull. Austral. Math. Soc. 46 (1992), 271-285 Zbl0758.26004MR1183783
- V. Jiménez López, An explicit description of all scrambled sets of weakly unimodal functions of type , Real. Anal. Exchange 21 (1995/1996), 664-688 Zbl0879.58044MR1407279
- V. Jiménez López, L. Snoha, There are no piecewise linear maps of type , Trans. Amer. Math. Soc. 349 (1997), 1377-1387 Zbl0947.37025MR1389785
- M. Kutcha, J. SmÍtal, Two-point scrambled set implies chaos, ECIT 87 (Caldes de Malavella, Spain, 1987) (1989), 427-430, World Scientific Publishing, Teaneck
- Z.L. Leibenzon, Investigation of some properties of a continuous pointwise mapping of an interval onto itself, having an application in the theory of nonlinear oscilations, Prikl. Mat. i Mekh (Russian) 17 (1953), 351-360 MR55429
- T.Y. Li, J.A. Yorke, Period three implies chaos, Amer. Math. Monthly 82 (1975), 985-992 Zbl0351.92021MR385028
- M. Martens, W. de Melo, S. van Strien, Julia-Fatou-Sullivan theory for real one-dimensional dynamics, Acta Math. 168 (1992), 271-318 Zbl0761.58007MR1161268
- M. Martens, C. Tresser, Forcing of periodic orbits for interval maps and renormalization of piecewise affine maps, Proc. Amer. Math. Soc. 124 (1996), 2863-2870 Zbl0864.58035MR1343712
- J. Milnor, W. Thurston, On iterated maps of the interval, Dynamical systems (College Park, MD, 1986/1987) 1342 (1988), 465-563, Springer, Berlin-New York Zbl0664.58015
- M. Misiurewicz, Horseshoes for mappings of an interval, Bull. Acad. Pol. Sci., Sér. Sci. Math. 27 (1979), 167-169 Zbl0459.54031MR542778
- M. Misiurewicz, J. Smital, Smooth chaotic functions with zero topological entropy, Ergodic Theory Dynam. Systems 8 (1988), 421-424 Zbl0689.58028MR961740
- M. Misiurewicz, W. Szlenk, Entropy of piecewise monotone mappings, Studia Math. 67 (1980), 45-63 Zbl0445.54007MR579440
- J. Rothschild, On the computation of topological entropy, (1971)
- A.N. Sharkovsky, Coexistence of cycles of a continuous map of the line into itself, Ukrain. Mat. Ž 16 (1964), 61-71 MR159905
- P. Walters, An introduction to ergodic theory, (1982), Springer-Verlag, New York-Berlin Zbl0475.28009MR648108
- A.N. Sharkovsky, S.F. Kolyada, A.G. Sivak, Dynamics of one-dimensional maps, (1997), Kluwer, Dordrecht Zbl0881.58020
- A.N. Sharkovsky, Coexistence of cycles of a continuous map of the line into itself, Internat. J. Bifur. Chaos Appl. Sci. Engrg. (English transl.) 5 (1995), 1263-1273 Zbl0890.58012MR1361914
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.