Commutativity and non-commutativity of topological sequence entropy
Francisco Balibrea; Jose Salvador Cánovas Peña; Víctor Jiménez López
Annales de l'institut Fourier (1999)
- Volume: 49, Issue: 5, page 1693-1709
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBalibrea, Francisco, Peña, Jose Salvador Cánovas, and López, Víctor Jiménez. "Commutativity and non-commutativity of topological sequence entropy." Annales de l'institut Fourier 49.5 (1999): 1693-1709. <http://eudml.org/doc/75399>.
@article{Balibrea1999,
abstract = {In this paper we study the commutativity property for topological sequence entropy. We prove that if $X$ is a compact metric space and $f,g: X\rightarrow X$ are continuous maps then $h _A(f\circ g)=h_A(g\circ f)$ for every increasing sequence $A$ if $X=[0,1]$, and construct a counterexample for the general case. In the interim, we also show that the equality $h_A(f)=h_A(f\vert _\{\cap _\{n\ge 0\}f^n(X)\})$ is true if $X=[0,1]$ but does not necessarily hold if $X$ is an arbitrary compact metric space.},
author = {Balibrea, Francisco, Peña, Jose Salvador Cánovas, López, Víctor Jiménez},
journal = {Annales de l'institut Fourier},
keywords = {commutativity; topological sequence entropy},
language = {eng},
number = {5},
pages = {1693-1709},
publisher = {Association des Annales de l'Institut Fourier},
title = {Commutativity and non-commutativity of topological sequence entropy},
url = {http://eudml.org/doc/75399},
volume = {49},
year = {1999},
}
TY - JOUR
AU - Balibrea, Francisco
AU - Peña, Jose Salvador Cánovas
AU - López, Víctor Jiménez
TI - Commutativity and non-commutativity of topological sequence entropy
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 5
SP - 1693
EP - 1709
AB - In this paper we study the commutativity property for topological sequence entropy. We prove that if $X$ is a compact metric space and $f,g: X\rightarrow X$ are continuous maps then $h _A(f\circ g)=h_A(g\circ f)$ for every increasing sequence $A$ if $X=[0,1]$, and construct a counterexample for the general case. In the interim, we also show that the equality $h_A(f)=h_A(f\vert _{\cap _{n\ge 0}f^n(X)})$ is true if $X=[0,1]$ but does not necessarily hold if $X$ is an arbitrary compact metric space.
LA - eng
KW - commutativity; topological sequence entropy
UR - http://eudml.org/doc/75399
ER -
References
top- [1] R. L. ADLER, A. G. KONHEIM and M. H. McANDREW, Topological entropy, Trans. Amer. Math. Soc., 114 (1965), 309-319. Zbl0127.13102MR30 #5291
- [2] F. BALIBREA, J. S. CÁNOVAS PEÑA and V. JIMÉNEZ LÓPEZ, Some results on entropy and sequence entropy, Internat. J. Bifur. Chaos Appl. Sci. Engrg. (to appear). Zbl0942.28017
- [3] F. BALIBREA, J. S. CÁNOVAS PEÑA and V. JIMÉNEZ LÓPEZ, Topological sequence entropy on the nonwandering set can be less than on the whole space: an interval counterexample, preprint.
- [4] R. A. DANA and L. MONTRUCCHIO, Dynamic complexity in duopoly games, J. Econom. Theory, 44 (1986), 40-56. Zbl0617.90104MR87k:90045
- [5] N. FRANZOVÁ and J. SMITAL, Positive sequence topological entropy characterizes chaotic maps, Proc. Amer. Math. Soc., 112 (1991), 1083-1086. Zbl0735.26005MR91j:58107
- [6] T. N. T. GOODMAN, Topological sequence entropy, Proc. London Math. Soc., 29 (1974), 331-350. Zbl0293.54043MR50 #8482
- [7] W. H. GOTTSCHALK and G. A. HEDLUNG, Topological Dynamics, Amer. Math. Soc., 1955. Zbl0067.15204
- [8] V. JIMÉNEZ LÓPEZ, An explicit description of all scrambled sets of weakly unimodal functions of type 2∞, Real. Anal. Exch., 21 (1995/1996), 1-26. Zbl0879.58044MR97g:58109
- [9] S. KOLYADA and L'. SNOHA, Topological entropy of nonautononous dynamical systems, Random and Comp. Dynamics, 4 (1996), 205-233. Zbl0909.54012MR98f:58126
- [10] A. LINERO, Cuestiones sobre dinámica topológica de algunos sistemas bidimensionales y medidas invariantes de sistemas unidimensionales asociados, PhD thesis, Universidad de Murcia, 1998.
- [11] M. MISIUREWICZ and J. SMITAL, Smooth chaotic functions with zero topological entropy, Ergod. Th. and Dynam. Sys., 8 (1988), 421-424. Zbl0689.58028MR90a:58118
- [12] W. SZLENK, On weakly* conditionally compact dynamical systems, Studia Math., 66 (1979), 25-32. Zbl0497.54039MR81a:54043
- [13] P. WALTERS, An introduction to ergodic theory, Springer-Verlag, Berlin, 1982. Zbl0475.28009MR84e:28017
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.