# Commutativity and non-commutativity of topological sequence entropy

• Volume: 49, Issue: 5, page 1693-1709
• ISSN: 0373-0956

top

## Abstract

top
In this paper we study the commutativity property for topological sequence entropy. We prove that if $X$ is a compact metric space and $f,g:X\to X$ are continuous maps then ${h}_{A}\left(f\circ g\right)={h}_{A}\left(g\circ f\right)$ for every increasing sequence $A$ if $X=\left[0,1\right]$, and construct a counterexample for the general case. In the interim, we also show that the equality ${h}_{A}\left(f\right)={h}_{A}\left(f{|}_{{\cap }_{n\ge 0}{f}^{n}\left(X\right)}\right)$ is true if $X=\left[0,1\right]$ but does not necessarily hold if $X$ is an arbitrary compact metric space.

## How to cite

top

Balibrea, Francisco, Peña, Jose Salvador Cánovas, and López, Víctor Jiménez. "Commutativity and non-commutativity of topological sequence entropy." Annales de l'institut Fourier 49.5 (1999): 1693-1709. <http://eudml.org/doc/75399>.

@article{Balibrea1999,
abstract = {In this paper we study the commutativity property for topological sequence entropy. We prove that if $X$ is a compact metric space and $f,g: X\rightarrow X$ are continuous maps then $h _A(f\circ g)=h_A(g\circ f)$ for every increasing sequence $A$ if $X=[0,1]$, and construct a counterexample for the general case. In the interim, we also show that the equality $h_A(f)=h_A(f\vert _\{\cap _\{n\ge 0\}f^n(X)\})$ is true if $X=[0,1]$ but does not necessarily hold if $X$ is an arbitrary compact metric space.},
author = {Balibrea, Francisco, Peña, Jose Salvador Cánovas, López, Víctor Jiménez},
journal = {Annales de l'institut Fourier},
keywords = {commutativity; topological sequence entropy},
language = {eng},
number = {5},
pages = {1693-1709},
publisher = {Association des Annales de l'Institut Fourier},
title = {Commutativity and non-commutativity of topological sequence entropy},
url = {http://eudml.org/doc/75399},
volume = {49},
year = {1999},
}

TY - JOUR
AU - Balibrea, Francisco
AU - Peña, Jose Salvador Cánovas
AU - López, Víctor Jiménez
TI - Commutativity and non-commutativity of topological sequence entropy
JO - Annales de l'institut Fourier
PY - 1999
PB - Association des Annales de l'Institut Fourier
VL - 49
IS - 5
SP - 1693
EP - 1709
AB - In this paper we study the commutativity property for topological sequence entropy. We prove that if $X$ is a compact metric space and $f,g: X\rightarrow X$ are continuous maps then $h _A(f\circ g)=h_A(g\circ f)$ for every increasing sequence $A$ if $X=[0,1]$, and construct a counterexample for the general case. In the interim, we also show that the equality $h_A(f)=h_A(f\vert _{\cap _{n\ge 0}f^n(X)})$ is true if $X=[0,1]$ but does not necessarily hold if $X$ is an arbitrary compact metric space.
LA - eng
KW - commutativity; topological sequence entropy
UR - http://eudml.org/doc/75399
ER -

## References

top
1. [1] R. L. ADLER, A. G. KONHEIM and M. H. McANDREW, Topological entropy, Trans. Amer. Math. Soc., 114 (1965), 309-319. Zbl0127.13102MR30 #5291
2. [2] F. BALIBREA, J. S. CÁNOVAS PEÑA and V. JIMÉNEZ LÓPEZ, Some results on entropy and sequence entropy, Internat. J. Bifur. Chaos Appl. Sci. Engrg. (to appear). Zbl0942.28017
3. [3] F. BALIBREA, J. S. CÁNOVAS PEÑA and V. JIMÉNEZ LÓPEZ, Topological sequence entropy on the nonwandering set can be less than on the whole space: an interval counterexample, preprint.
4. [4] R. A. DANA and L. MONTRUCCHIO, Dynamic complexity in duopoly games, J. Econom. Theory, 44 (1986), 40-56. Zbl0617.90104MR87k:90045
5. [5] N. FRANZOVÁ and J. SMITAL, Positive sequence topological entropy characterizes chaotic maps, Proc. Amer. Math. Soc., 112 (1991), 1083-1086. Zbl0735.26005MR91j:58107
6. [6] T. N. T. GOODMAN, Topological sequence entropy, Proc. London Math. Soc., 29 (1974), 331-350. Zbl0293.54043MR50 #8482
7. [7] W. H. GOTTSCHALK and G. A. HEDLUNG, Topological Dynamics, Amer. Math. Soc., 1955. Zbl0067.15204
8. [8] V. JIMÉNEZ LÓPEZ, An explicit description of all scrambled sets of weakly unimodal functions of type 2∞, Real. Anal. Exch., 21 (1995/1996), 1-26. Zbl0879.58044MR97g:58109
9. [9] S. KOLYADA and L'. SNOHA, Topological entropy of nonautononous dynamical systems, Random and Comp. Dynamics, 4 (1996), 205-233. Zbl0909.54012MR98f:58126
10. [10] A. LINERO, Cuestiones sobre dinámica topológica de algunos sistemas bidimensionales y medidas invariantes de sistemas unidimensionales asociados, PhD thesis, Universidad de Murcia, 1998.
11. [11] M. MISIUREWICZ and J. SMITAL, Smooth chaotic functions with zero topological entropy, Ergod. Th. and Dynam. Sys., 8 (1988), 421-424. Zbl0689.58028MR90a:58118
12. [12] W. SZLENK, On weakly* conditionally compact dynamical systems, Studia Math., 66 (1979), 25-32. Zbl0497.54039MR81a:54043
13. [13] P. WALTERS, An introduction to ergodic theory, Springer-Verlag, Berlin, 1982. Zbl0475.28009MR84e:28017

top

## NotesEmbed?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.