Einstein metrics on rational homology 7-spheres

Charles P. Boyer[1]; Krzysztof Galicki[1]; Michael Nakamaye[1]

  • [1] University of New Mexico, Department of Mathematics and Statistics, Albuquerque NM 87131 (USA)

Annales de l’institut Fourier (2002)

  • Volume: 52, Issue: 5, page 1569-1584
  • ISSN: 0373-0956

Abstract

top
In this paper we demonstrate the existence of Sasakian-Einstein structures on certain 2- connected rational homology 7-spheres. These appear to be the first non-regular examples of Sasakian-Einstein metrics on simply connected rational homology spheres. We also briefly describe the rational homology 7-spheres that admit regular positive Sasakian structures.

How to cite

top

Boyer, Charles P., Galicki, Krzysztof, and Nakamaye, Michael. "Einstein metrics on rational homology 7-spheres." Annales de l’institut Fourier 52.5 (2002): 1569-1584. <http://eudml.org/doc/116018>.

@article{Boyer2002,
abstract = {In this paper we demonstrate the existence of Sasakian-Einstein structures on certain 2- connected rational homology 7-spheres. These appear to be the first non-regular examples of Sasakian-Einstein metrics on simply connected rational homology spheres. We also briefly describe the rational homology 7-spheres that admit regular positive Sasakian structures.},
affiliation = {University of New Mexico, Department of Mathematics and Statistics, Albuquerque NM 87131 (USA); University of New Mexico, Department of Mathematics and Statistics, Albuquerque NM 87131 (USA); University of New Mexico, Department of Mathematics and Statistics, Albuquerque NM 87131 (USA)},
author = {Boyer, Charles P., Galicki, Krzysztof, Nakamaye, Michael},
journal = {Annales de l’institut Fourier},
keywords = {Einstein metrics; sasakian structures; homology spheres; Sasakian structures},
language = {eng},
number = {5},
pages = {1569-1584},
publisher = {Association des Annales de l'Institut Fourier},
title = {Einstein metrics on rational homology 7-spheres},
url = {http://eudml.org/doc/116018},
volume = {52},
year = {2002},
}

TY - JOUR
AU - Boyer, Charles P.
AU - Galicki, Krzysztof
AU - Nakamaye, Michael
TI - Einstein metrics on rational homology 7-spheres
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 5
SP - 1569
EP - 1584
AB - In this paper we demonstrate the existence of Sasakian-Einstein structures on certain 2- connected rational homology 7-spheres. These appear to be the first non-regular examples of Sasakian-Einstein metrics on simply connected rational homology spheres. We also briefly describe the rational homology 7-spheres that admit regular positive Sasakian structures.
LA - eng
KW - Einstein metrics; sasakian structures; homology spheres; Sasakian structures
UR - http://eudml.org/doc/116018
ER -

References

top
  1. R.J. Baston, M.G. Eastwood, The Penrose Transform, (1989), Oxford University Press, New York Zbl0726.58004MR1038279
  2. H. Baum, T. Friedrich, R. Grunewald, I. Kath, Twistors and Killing Spinors on Riemannian Manifolds, vol. 124 (1991), Teubner, Stuttgart, Leipzig Zbl0734.53003MR1164864
  3. C. P. Boyer, K. Galicki, On Sasakian-Einstein Geometry, Int. J. Math 11 (2000), 873-909 Zbl1022.53038MR1792957
  4. C. P. Boyer, K. Galicki, 3-Sasakian manifolds. Surveys in differential geometry: essays on Einstein manifolds, (1999), 123-184, Int. Press, Boston, MA Zbl1008.53047
  5. C. P. Boyer, K. Galicki, New Einstein Metrics in Dimension Five, J. Diff. Geom. 57 (2001), 443-463 Zbl1039.53048MR1882664
  6. C. P. Boyer, K. Galicki, M. Nakamaye, On the Geometry of Sasakian-Einstein 5-Manifolds Zbl1046.53028MR1968604
  7. C. P. Boyer, K. Galicki, and M. Nakamaye, On Positive Sasakian Geometry Zbl1046.53029MR2017897
  8. C. P. Boyer, K. Galicki, M. Nakamaye, Sasakian-Einstein Structures on 9 # ( S 2 × S 3 ) , Trans. Amer. Math. Soc. 354 (2002), 2983-2996 Zbl1003.53038MR1897386
  9. C. P. Boyer, K. Galicki, P. Piccinni, 3-Sasakian Geometry, Nilpotent Orbits, and Exceptional Quotients, Ann. Global Anal. Geom 21 (2002), 85-110 Zbl1003.53032MR1889251
  10. J.-P. Demailly, J. Kollár, Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds, Ann. Scient. Ec. Norm. Sup. Paris 34 (2001), 525-556 Zbl0994.32021MR1852009
  11. I. Dolgachev, Weighted projective varieties, Proceedings, Group Actions and Vector Fields, Vancouver 956 (1981), 34-71 Zbl0516.14014
  12. A.R. Fletcher, Working with weighted complete intersections, revised version in Explicit birational geometry of 3-folds (2000), 101-173, Cambridge Univ. Press Zbl0960.14027
  13. K. Galicki, S. Salamon, On Betti numbers of 3-Sasakian manifolds, Geom. Ded. 63 (1996), 45-68 Zbl0859.53031MR1413621
  14. F. Hirzebruch, D. Zagier, The Atiyah-Singer Theorem and Elementary Number Theory, (1974), Publish or Perish, Inc., Berkeley Zbl0288.10001MR650832
  15. V. A. Iskovskikh, Anticanonical Models of Three-dimensional Algebraic Varieties, J. Soviet Math. 13 (1980), 745-814 Zbl0428.14016
  16. V. A. Iskovskikh, Yu.G. Prokhorov, Fano Varieties, Algebraic Geometry V Vol 47 (1999), Springer-Verlag Zbl0912.14013
  17. J. M. Johnson, J. Kollár, Kähler-Einstein metrics on log del Pezzo surfaces in weighted projective 3-space, Ann. Inst. Fourier 51 (2001), 69-79 Zbl0974.14023MR1821068
  18. J. M. Johnson, J. Kollár, Fano hypersurfaces in weighted projective 4-spaces, Experimental Math 10(1) (2001), 151-158 Zbl0972.14034MR1822861
  19. J. Milnor, Singular Points of Complex Hypersurface, 61 (1968), Princeton Univ. Press Zbl0184.48405MR239612
  20. J. Milnor, P. Orlik, Isolated singularities defined by weighted homogeneous polynomials, Topology 9 (1970), 385-393 Zbl0204.56503MR293680
  21. S. Morita, A Topological Classification of Complex Structures on S 1 × Σ 2 n - 1 , Topology 14 (1975), 13-22 Zbl0301.57010MR405444
  22. S. Mukai, H. Umemura, Minimal Rational Threefolds, Algebraic Geometry 1016 (1983), 490-518, Springer-Verlag, New York Zbl0526.14006
  23. H. Sato, Remarks Concerning Contact Manifolds, Tôhoku Math. J 29 (1977), 577-584 Zbl0382.53031MR458334
  24. S. Tachibana, W.N. Yu, On a Riemannian space admitting more than one Sasakian structure, Tôhoku Math. J 22 (1970), 536-540 Zbl0213.48301MR275329
  25. G. Tian, Kähler-Einstein metrics with positive scalar curvature, Invent. Math 137 (1997), 1-37 Zbl0892.53027MR1471884
  26. G. Tian, Canonical Metrics in Kähler Geometry, (2000), Birkhäuser, Boston Zbl0978.53002MR1787650
  27. I. Ustilovsky, Infinitely Many Contact Structures on S 4 m + 1 , Int. Math. Res. Notices 14 (1999), 781-791 Zbl1034.53080MR1704176
  28. I. Ustilovsky, Contact Homology and Contact Structures on S 4 m + 1 , (2000) Zbl1034.53080
  29. K. Yano, M. Kon, Structures on manifolds, 3 (1984), World Scientific Pub. Co., Singapore Zbl0557.53001MR794310
  30. C. P. Boyer, K. Galicki, M. Nakamaye, Sasakian Geometry, Homotopy Spheres and Positive Ricci Curvature Zbl1066.53089MR1978045
  31. C. P. Boyer, K. Galicki, M. Nakamaye, Sasakian-Einstein Structures on 9 # ( S 2 × S 3 )  Zbl1003.53038
  32. J.-P. Demailly, J. Kollar, Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds Zbl0994.32021

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.