Einstein metrics on rational homology 7-spheres
Charles P. Boyer[1]; Krzysztof Galicki[1]; Michael Nakamaye[1]
- [1] University of New Mexico, Department of Mathematics and Statistics, Albuquerque NM 87131 (USA)
Annales de l’institut Fourier (2002)
- Volume: 52, Issue: 5, page 1569-1584
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBoyer, Charles P., Galicki, Krzysztof, and Nakamaye, Michael. "Einstein metrics on rational homology 7-spheres." Annales de l’institut Fourier 52.5 (2002): 1569-1584. <http://eudml.org/doc/116018>.
@article{Boyer2002,
abstract = {In this paper we demonstrate the existence of Sasakian-Einstein structures on certain 2-
connected rational homology 7-spheres. These appear to be the first non-regular examples
of Sasakian-Einstein metrics on simply connected rational homology spheres. We also
briefly describe the rational homology 7-spheres that admit regular positive Sasakian
structures.},
affiliation = {University of New Mexico, Department of Mathematics and Statistics, Albuquerque NM 87131 (USA); University of New Mexico, Department of Mathematics and Statistics, Albuquerque NM 87131 (USA); University of New Mexico, Department of Mathematics and Statistics, Albuquerque NM 87131 (USA)},
author = {Boyer, Charles P., Galicki, Krzysztof, Nakamaye, Michael},
journal = {Annales de l’institut Fourier},
keywords = {Einstein metrics; sasakian structures; homology spheres; Sasakian structures},
language = {eng},
number = {5},
pages = {1569-1584},
publisher = {Association des Annales de l'Institut Fourier},
title = {Einstein metrics on rational homology 7-spheres},
url = {http://eudml.org/doc/116018},
volume = {52},
year = {2002},
}
TY - JOUR
AU - Boyer, Charles P.
AU - Galicki, Krzysztof
AU - Nakamaye, Michael
TI - Einstein metrics on rational homology 7-spheres
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 5
SP - 1569
EP - 1584
AB - In this paper we demonstrate the existence of Sasakian-Einstein structures on certain 2-
connected rational homology 7-spheres. These appear to be the first non-regular examples
of Sasakian-Einstein metrics on simply connected rational homology spheres. We also
briefly describe the rational homology 7-spheres that admit regular positive Sasakian
structures.
LA - eng
KW - Einstein metrics; sasakian structures; homology spheres; Sasakian structures
UR - http://eudml.org/doc/116018
ER -
References
top- R.J. Baston, M.G. Eastwood, The Penrose Transform, (1989), Oxford University Press, New York Zbl0726.58004MR1038279
- H. Baum, T. Friedrich, R. Grunewald, I. Kath, Twistors and Killing Spinors on Riemannian Manifolds, vol. 124 (1991), Teubner, Stuttgart, Leipzig Zbl0734.53003MR1164864
- C. P. Boyer, K. Galicki, On Sasakian-Einstein Geometry, Int. J. Math 11 (2000), 873-909 Zbl1022.53038MR1792957
- C. P. Boyer, K. Galicki, 3-Sasakian manifolds. Surveys in differential geometry: essays on Einstein manifolds, (1999), 123-184, Int. Press, Boston, MA Zbl1008.53047
- C. P. Boyer, K. Galicki, New Einstein Metrics in Dimension Five, J. Diff. Geom. 57 (2001), 443-463 Zbl1039.53048MR1882664
- C. P. Boyer, K. Galicki, M. Nakamaye, On the Geometry of Sasakian-Einstein 5-Manifolds Zbl1046.53028MR1968604
- C. P. Boyer, K. Galicki, and M. Nakamaye, On Positive Sasakian Geometry Zbl1046.53029MR2017897
- C. P. Boyer, K. Galicki, M. Nakamaye, Sasakian-Einstein Structures on , Trans. Amer. Math. Soc. 354 (2002), 2983-2996 Zbl1003.53038MR1897386
- C. P. Boyer, K. Galicki, P. Piccinni, 3-Sasakian Geometry, Nilpotent Orbits, and Exceptional Quotients, Ann. Global Anal. Geom 21 (2002), 85-110 Zbl1003.53032MR1889251
- J.-P. Demailly, J. Kollár, Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds, Ann. Scient. Ec. Norm. Sup. Paris 34 (2001), 525-556 Zbl0994.32021MR1852009
- I. Dolgachev, Weighted projective varieties, Proceedings, Group Actions and Vector Fields, Vancouver 956 (1981), 34-71 Zbl0516.14014
- A.R. Fletcher, Working with weighted complete intersections, revised version in Explicit birational geometry of 3-folds (2000), 101-173, Cambridge Univ. Press Zbl0960.14027
- K. Galicki, S. Salamon, On Betti numbers of 3-Sasakian manifolds, Geom. Ded. 63 (1996), 45-68 Zbl0859.53031MR1413621
- F. Hirzebruch, D. Zagier, The Atiyah-Singer Theorem and Elementary Number Theory, (1974), Publish or Perish, Inc., Berkeley Zbl0288.10001MR650832
- V. A. Iskovskikh, Anticanonical Models of Three-dimensional Algebraic Varieties, J. Soviet Math. 13 (1980), 745-814 Zbl0428.14016
- V. A. Iskovskikh, Yu.G. Prokhorov, Fano Varieties, Algebraic Geometry V Vol 47 (1999), Springer-Verlag Zbl0912.14013
- J. M. Johnson, J. Kollár, Kähler-Einstein metrics on log del Pezzo surfaces in weighted projective 3-space, Ann. Inst. Fourier 51 (2001), 69-79 Zbl0974.14023MR1821068
- J. M. Johnson, J. Kollár, Fano hypersurfaces in weighted projective 4-spaces, Experimental Math 10(1) (2001), 151-158 Zbl0972.14034MR1822861
- J. Milnor, Singular Points of Complex Hypersurface, 61 (1968), Princeton Univ. Press Zbl0184.48405MR239612
- J. Milnor, P. Orlik, Isolated singularities defined by weighted homogeneous polynomials, Topology 9 (1970), 385-393 Zbl0204.56503MR293680
- S. Morita, A Topological Classification of Complex Structures on , Topology 14 (1975), 13-22 Zbl0301.57010MR405444
- S. Mukai, H. Umemura, Minimal Rational Threefolds, Algebraic Geometry 1016 (1983), 490-518, Springer-Verlag, New York Zbl0526.14006
- H. Sato, Remarks Concerning Contact Manifolds, Tôhoku Math. J 29 (1977), 577-584 Zbl0382.53031MR458334
- S. Tachibana, W.N. Yu, On a Riemannian space admitting more than one Sasakian structure, Tôhoku Math. J 22 (1970), 536-540 Zbl0213.48301MR275329
- G. Tian, Kähler-Einstein metrics with positive scalar curvature, Invent. Math 137 (1997), 1-37 Zbl0892.53027MR1471884
- G. Tian, Canonical Metrics in Kähler Geometry, (2000), Birkhäuser, Boston Zbl0978.53002MR1787650
- I. Ustilovsky, Infinitely Many Contact Structures on , Int. Math. Res. Notices 14 (1999), 781-791 Zbl1034.53080MR1704176
- I. Ustilovsky, Contact Homology and Contact Structures on , (2000) Zbl1034.53080
- K. Yano, M. Kon, Structures on manifolds, 3 (1984), World Scientific Pub. Co., Singapore Zbl0557.53001MR794310
- C. P. Boyer, K. Galicki, M. Nakamaye, Sasakian Geometry, Homotopy Spheres and Positive Ricci Curvature Zbl1066.53089MR1978045
- C. P. Boyer, K. Galicki, M. Nakamaye, Sasakian-Einstein Structures on Zbl1003.53038
- J.-P. Demailly, J. Kollar, Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds Zbl0994.32021
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.