On the characteristic connection of gwistor space

Rui Albuquerque

Open Mathematics (2013)

  • Volume: 11, Issue: 1, page 149-160
  • ISSN: 2391-5455

Abstract

top
We give a brief presentation of gwistor spaces, which is a new concept from G 2 geometry. Then we compute the characteristic torsion T c of the gwistor space of an oriented Riemannian 4-manifold with constant sectional curvature k and deduce the condition under which T c is ∇c-parallel; this allows for the classification of the G 2 structure with torsion and the characteristic holonomy according to known references. The case of an Einstein base manifold is envisaged.

How to cite

top

Rui Albuquerque. "On the characteristic connection of gwistor space." Open Mathematics 11.1 (2013): 149-160. <http://eudml.org/doc/269679>.

@article{RuiAlbuquerque2013,
abstract = {We give a brief presentation of gwistor spaces, which is a new concept from G 2 geometry. Then we compute the characteristic torsion T c of the gwistor space of an oriented Riemannian 4-manifold with constant sectional curvature k and deduce the condition under which T c is ∇c-parallel; this allows for the classification of the G 2 structure with torsion and the characteristic holonomy according to known references. The case of an Einstein base manifold is envisaged.},
author = {Rui Albuquerque},
journal = {Open Mathematics},
keywords = {Einstein metric; gwistor space; Characteristic torsion; G2 structure; -structure; Einstein manifold; characteristic connection; skew-symmetric torsion},
language = {eng},
number = {1},
pages = {149-160},
title = {On the characteristic connection of gwistor space},
url = {http://eudml.org/doc/269679},
volume = {11},
year = {2013},
}

TY - JOUR
AU - Rui Albuquerque
TI - On the characteristic connection of gwistor space
JO - Open Mathematics
PY - 2013
VL - 11
IS - 1
SP - 149
EP - 160
AB - We give a brief presentation of gwistor spaces, which is a new concept from G 2 geometry. Then we compute the characteristic torsion T c of the gwistor space of an oriented Riemannian 4-manifold with constant sectional curvature k and deduce the condition under which T c is ∇c-parallel; this allows for the classification of the G 2 structure with torsion and the characteristic holonomy according to known references. The case of an Einstein base manifold is envisaged.
LA - eng
KW - Einstein metric; gwistor space; Characteristic torsion; G2 structure; -structure; Einstein manifold; characteristic connection; skew-symmetric torsion
UR - http://eudml.org/doc/269679
ER -

References

top
  1. [1] Abbassi M.T.K., Kowalski O., On Einstein Riemannian g-natural metrics on unit tangent sphere bundles, Ann. Global Anal. Geom., 2010, 38(1), 11–20 http://dx.doi.org/10.1007/s10455-010-9197-1 Zbl1206.53049
  2. [2] Agricola I., The Srní lectures on non-integrable geometries with torsion, Arch. Math. (Brno), 2006, 42(suppl.), 5–84 Zbl1164.53300
  3. [3] Albuquerque R., On the G 2 bundle of a Riemannian 4-manifold, J. Geom. Phys., 2010, 60(6–8), 924–939 http://dx.doi.org/10.1016/j.geomphys.2010.02.009 
  4. [4] Albuquerque R., Homotheties and topology of tangent sphere bundles, preprint available at http://arxiv.org/abs/1012.4135 Zbl1307.55006
  5. [5] Albuquerque R., Salavessa I., The G 2 sphere of a 4-manifold, Monatsh. Math., 2009, 158(4), 335–348 http://dx.doi.org/10.1007/s00605-008-0053-3 Zbl1193.53110
  6. [6] Albuquerque R., Salavessa I., Erratum to: The G 2 sphere of a 4-manifold, Monatsh. Math., 2010, 160(1), 109–110 http://dx.doi.org/10.1007/s00605-010-0191-2 Zbl1187.53044
  7. [7] Arvanitoyeorgos A., SO(n)-invariant Einstein metrics on Stiefel manifolds, In: Differential Geometry and Applications, Brno, August 28–September 1, 1995, Masaryk University, Brno, 1996, 1–5 
  8. [8] Baum H., Friedrich Th., Grunewald R., Kath I., Twistors and Killing Spinors on Riemannian Manifolds, Teubner-Texte Math., 124, Teubner, Stuttgart, 1991 Zbl0734.53003
  9. [9] Besse A.L., Einstein Manifolds, Ergeb. Math. Grenzgeb., 10, Springer, Berlin, 1987 
  10. [10] Blair D.E., Riemannian Geometry of Contact and Symplectic Manifolds, Progr. Math., 203, Birkhaüser, Boston, 2002 Zbl1011.53001
  11. [11] Borel A., Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math., 1953, 57(1), 115–207 http://dx.doi.org/10.2307/1969728 Zbl0052.40001
  12. [12] Boyer Ch.P., Galicki K., Matzeu P., On eta-Einstein Sasakian geometry, Comm. Math. Phys., 2006, 262(1), 177–208 http://dx.doi.org/10.1007/s00220-005-1459-6 Zbl1103.53022
  13. [13] Boyer Ch.P., Galicki K., Nakamaye M., Einstein metrics on rational homology 7-spheres, Ann. Inst. Fourier (Grenoble), 2002, 52(5), 1569–1584 http://dx.doi.org/10.5802/aif.1925 Zbl1023.53029
  14. [14] Bryant R.L., Some remarks on G 2 structures, In: Proceedings of Gökova Geometry-Topology Conference, Gökova, May 24–28, 2004, May 30–June 3, 2005, Gökova Geometry/Topology Conference, Gökova/International Press, Somerville, 2006 
  15. [15] Chai Y.D., Chun S.H., Park J.H., Sekigawa K., Remarks on η-Einstein unit tangent bundles, Monatsh. Math., 2008, 155(1), 31–42 http://dx.doi.org/10.1007/s00605-008-0534-4 Zbl1151.53041
  16. [16] Chiossi S.G., Swann A., G 2-structures with torsion from half-integrable nilmanifolds, J. Geom. Phys., 2005, 54(3), 262–285 http://dx.doi.org/10.1016/j.geomphys.2004.09.009 Zbl1086.53069
  17. [17] Fernández M., Gray A., Riemannian manifolds with structure group G 2, Ann. Mat. Pura Appl., 1982, 132, 19–45 http://dx.doi.org/10.1007/BF01760975 Zbl0524.53023
  18. [18] Friedrich Th., G 2-manifolds with parallel characteristic torsion, Differential Geom. Appl., 2007, 25(6), 632–648 http://dx.doi.org/10.1016/j.difgeo.2007.06.010 Zbl1141.53019
  19. [19] Friedrich Th., Ivanov S., Parallel spinors and connections with skew-symmetric torsion in string theory, Asian J. Math., 2002, 6(2), 303–335 Zbl1127.53304
  20. [20] Friedrich Th., Ivanov S., Killing spinor equations in dimension 7 and geometry of integrable G 2-manifolds, J. Geom. Phys., 2003, 48(1), 1–11 http://dx.doi.org/10.1016/S0393-0440(03)00005-6 Zbl1029.81037
  21. [21] Friedrich Th., Kath I., 7-dimensional compact Riemannian manifolds with Killing spinors, Comm. Math. Phys., 1990, 133(3), 543–561 http://dx.doi.org/10.1007/BF02097009 Zbl0722.53038
  22. [22] Kath I., Pseudo-Riemannian T-duals of compact Riemannian homogeneous spaces, Transform. Groups, 2000, 5(2), 157–179 http://dx.doi.org/10.1007/BF01236467 Zbl0965.53037
  23. [23] Kobayashi S., Nomizu K., Foundations of Differential Geometry I, Interscience, New York-London, 1963 Zbl0119.37502
  24. [24] Kobayashi S., Nomizu K., Foundations of Differential Geometry II, Interscience Tracts in Pure and Applied Mathematics, 15, Interscience, New York-London-Sydney, 1969 Zbl0175.48504
  25. [25] Okumura M., Some remarks on space with a certain contact structure, Tôhoku Math. J., 1962, 14, 135–145 http://dx.doi.org/10.2748/tmj/1178244168 Zbl0119.37701
  26. [26] Wang Mc.Y., Ziller W., On normal homogeneous Einstein manifolds, Ann. Sci. École Norm. Sup., 1985, 18(4), 563–633 Zbl0598.53049

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.