Semi-continuity of complex singularity exponents and Kähler–Einstein metrics on Fano orbifolds
Jean-Pierre Demailly; János Kollár
Annales scientifiques de l'École Normale Supérieure (2001)
- Volume: 34, Issue: 4, page 525-556
- ISSN: 0012-9593
Access Full Article
topHow to cite
topDemailly, Jean-Pierre, and Kollár, János. "Semi-continuity of complex singularity exponents and Kähler–Einstein metrics on Fano orbifolds." Annales scientifiques de l'École Normale Supérieure 34.4 (2001): 525-556. <http://eudml.org/doc/82550>.
@article{Demailly2001,
author = {Demailly, Jean-Pierre, Kollár, János},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Arnold multiplicity; multiplier ideal sheaf; Lelong number; complex singularity exponent; Kähler-Einstein metrics; Fano orbifolds; del Pezzo surfaces},
language = {eng},
number = {4},
pages = {525-556},
publisher = {Elsevier},
title = {Semi-continuity of complex singularity exponents and Kähler–Einstein metrics on Fano orbifolds},
url = {http://eudml.org/doc/82550},
volume = {34},
year = {2001},
}
TY - JOUR
AU - Demailly, Jean-Pierre
AU - Kollár, János
TI - Semi-continuity of complex singularity exponents and Kähler–Einstein metrics on Fano orbifolds
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2001
PB - Elsevier
VL - 34
IS - 4
SP - 525
EP - 556
LA - eng
KW - Arnold multiplicity; multiplier ideal sheaf; Lelong number; complex singularity exponent; Kähler-Einstein metrics; Fano orbifolds; del Pezzo surfaces
UR - http://eudml.org/doc/82550
ER -
References
top- [1] Angehrn U., Siu Y.-T., Effective freeness and point separation for adjoint bundles, Invent. Math.122 (1995) 291-308. Zbl0847.32035MR1358978
- [2] Andreotti A., Vesentini E., Carleman estimates for the Laplace–Beltrami equation in complex manifolds, Publ. Math. I.H.E.S.25 (1965) 81-130. Zbl0138.06604
- [3] Arnold V.I., Gusein-Zade S.M., Varchenko A.N., Singularities of Differentiable Maps, Progress in Math., Birkhäuser, 1985. MR777682
- [4] Aubin T., Équations du type Monge–Ampère sur les variétés kählériennes compactes, C. R. Acad. Sci. Paris Ser. A283 (1976) 119-121, Bull. Sci. Math.102 (1978) 63-95. Zbl0333.53040
- [5] Barlet D., Développements asymptotiques des fonctions obtenues par intégration sur les fibres, Invent. Math.68 (1982) 129-174. Zbl0508.32003MR666639
- [6] Bombieri E., Algebraic values of meromorphic maps, Invent. Math.10 (1970) 267-287, Addendum, Invent. Math.11 (1970) 163-166. Zbl0214.33702MR306201
- [7] Boyer C., Galicki K., New Sasakian–Einstein 5-manifolds as links of isolated hypersurface singularities, Manuscript, February 2000.
- [8] Demailly J.-P., Nombres de Lelong généralisés, théorèmes d'intégralité et d'analyticité, Acta Math.159 (1987) 153-169. Zbl0629.32011MR908144
- [9] Demailly J.-P., Transcendental proof of a generalized Kawamata–Viehweg vanishing theorem, C. R. Acad. Sci. Paris Sér. I Math.309 (1989) 123-126, in: Berenstein C.A., Struppa D.C. (Eds.), Proceedings of the Conference “Geometrical and Algebraical Aspects in Several Complex Variables” held at Cetraro (Italy), 1989, pp. 81-94. Zbl1112.32303
- [10] Demailly J.-P., Singular hermitian metrics on positive line bundles, in: Hulek K., Peternell T., Schneider M., Schreyer F. (Eds.), Proc. Conf. Complex algebraic varieties (Bayreuth, April 2–6, 1990), Lecture Notes in Math., 1507, Springer-Verlag, Berlin, 1992. Zbl0784.32024
- [11] Demailly J.-P., Regularization of closed positive currents and intersection theory, J. Alg. Geom.1 (1992) 361-409. Zbl0777.32016MR1158622
- [12] Demailly J.-P., Monge–Ampère operators, Lelong numbers and intersection theory, in: Ancona V., Silva A. (Eds.), Complex Analysis and Geometry, Univ. Series in Math., Plenum Press, New York, 1993. Zbl0792.32006
- [13] Demailly J.-P., A numerical criterion for very ample line bundles, J. Differential Geom.37 (1993) 323-374. Zbl0783.32013MR1205448
- [14] Demailly J.-P., L2 vanishing theorems for positive line bundles and adjunction theory, Lecture Notes of the CIME Session, Transcendental Methods in Algebraic Geometry, Cetraro, Italy, July 1994, 96 p, Duke e-prints alg-geom/9410022. Zbl0883.14005
- [15] Dolgachev I., Weighted projective varieties, in: Group Actions and Vector Fields, Proc. Polish–North Am. Semin., Vancouver 1981, Lect. Notes in Math., 956, Springer-Verlag, 1982, pp. 34-71. Zbl0516.14014
- [16] Fletcher A.R., Working with weighted complete intersections, Preprint MPI/89-35, Max-Planck Institut für Mathematik, Bonn, 1989, Revised version: Iano–Fletcher A.R., in: Corti A., Reid M. (Eds.), Explicit Birational Geometry of 3-folds, Cambridge Univ. Press, 2000, pp. 101–173. Zbl0960.14027
- [17] Fujiki A., Kobayashi R., Lu S.S.Y., On the fundamental group of certain open normal surfaces, Saitama Math. J.11 (1993) 15-20. Zbl0798.14009MR1259272
- [18] Futaki A., An obstruction to the existence of Einstein–Kähler metrics, Invent. Math.73 (1983) 437-443. Zbl0506.53030
- [19] Hironaka H., Resolution of singularities of an algebraic variety over a field of characteristic zero, I, II, Ann. Math.79 (1964) 109-326. Zbl0122.38603MR199184
- [20] Hörmander L., An Introduction to Complex Analysis in Several Variables, North-Holland Math. Libr., 7, North-Holland, Amsterdam, 1973. Zbl0271.32001MR1045639
- [21] Johnson J.M., Kollár J., Kähler–Einstein metrics on log del Pezzo surfaces in weighted projective 3-spaces, Ann. Inst. Fourier51 (2001) 69-79. Zbl0974.14023
- [22] Kawamata Y., Matsuda K., Matsuki K., Introduction to the minimal model problem, Adv. Stud. Pure Math.10 (1987) 283-360. Zbl0672.14006MR946243
- [23] Kollár J., (with 14 coauthors) , Flips and Abundance for Algebraic Threefolds, Astérisque, 211, 1992. Zbl0814.14038
- [24] Kollár J., Shafarevich Maps and Automorphic Forms, Princeton Univ. Press, 1995. Zbl0871.14015MR1341589
- [25] Kollár J., Singularities of pairs, Algebraic Geometry, Santa Cruz, 1995, in: Proceedings of Symposia in Pure Math. Vol. 62, AMS, 1997, pp. 221-287. Zbl0905.14002MR1492525
- [26] Lelong P., Intégration sur un ensemble analytique complexe, Bull. Soc. Math. France85 (1957) 239-262. Zbl0079.30901MR95967
- [27] Lelong P., Plurisubharmonic Functions and Positive Differential Forms, Gordon and Breach, New York, and Dunod, Paris, 1969. Zbl0195.11604
- [28] Lichnerowicz A., Sur les transformations analytiques des variétés kählériennes, C. R. Acad. Sci. Paris244 (1957) 3011-3014. Zbl0080.37501MR94479
- [29] Lichtin B., An upper semicontinuity theorem for some leading poles of |f|2s, in: Complex Analytic Singularities, Adv. Stud. Pure Math., 8, North-Holland, Amsterdam, 1987, pp. 241-272. Zbl0615.32007MR894297
- [30] Lichtin B., Poles of |f(z,w)|2s and roots of the B-function, Ark. för Math.27 (1989) 283-304. Zbl0719.32016MR1022282
- [31] Manivel L., Un théorème de prolongement L2 de sections holomorphes d'un fibré vectoriel, Math. Z.212 (1993) 107-122. Zbl0789.32015MR1200166
- [32] Matsushima Y., Sur la structure du groupe d'homéomorphismes analytiques d'une certaine variété kählérienne, Nagoya Math. J.11 (1957) 145-150. Zbl0091.34803MR94478
- [33] Nadel A.M., Multiplier ideal sheaves and existence of Kähler–Einstein metrics of positive scalar curvature, Proc. Nat. Acad. Sci. USA86 (1989) 7299-7300. Zbl0711.53056
- [34] Nadel A.M., Multiplier ideal sheaves and Kähler–Einstein metrics of positive scalar curvature, Annals of Math.132 (1990) 549-596. Zbl0731.53063
- [35] Ohsawa T., Takegoshi K., On the extension of L2 holomorphic functions, Math. Z.195 (1987) 197-204. Zbl0625.32011MR892051
- [36] Ohsawa T., On the extension of L2 holomorphic functions, II, Publ. RIMS, Kyoto Univ.24 (1988) 265-275. Zbl0653.32012MR944862
- [37] Phong D.H., Sturm J., Algebraic estimates, stability of local zeta functions, and uniform estimates for distribution functions, preprint, January 1999, to appear in Ann. of Math. Zbl0995.11065MR1792297
- [38] Phong D.H., Sturm J., On a conjecture of Demailly and Kollár, preprint, April 2000. Zbl0978.32004MR1803721
- [39] Shokurov V., 3-fold log flips, Izv. Russ. Acad. Nauk Ser. Mat.56 (1992) 105-203. MR1162635
- [40] Siu Y.T., Analyticity of sets associated to Lelong numbers and the extension of closed positive currents, Invent. Math.27 (1974) 53-156. Zbl0289.32003MR352516
- [41] Siu Y.T., Lectures on Hermitian–Einstein metrics for stable bundles and Kähler–Einstein metrics, DMV Seminar (Band 8), Birkhäuser-Verlag, Basel, 1987. Zbl0631.53004
- [42] Siu Y.T., The existence of Kähler–Einstein metrics on manifolds with positive anticanonical line bundle and a suitable finite symmetry group, Ann. of Math.127 (1988) 585-627. Zbl0651.53035
- [43] Siu Y.T., An effective Matsusaka big theorem, Ann. Inst. Fourier.43 (1993) 1387-1405. Zbl0803.32017MR1275204
- [44] Skoda H., Sous-ensembles analytiques d'ordre fini ou infini dans Cn, Bull. Soc. Math. France100 (1972) 353-408. Zbl0246.32009MR352517
- [45] Skoda H., Estimations L2pour l’opérateur et applications arithmétiques, in: Séminaire P. Lelong (Analyse), année 1975/76, Lecture Notes in Math., 538, Springer-Verlag, Berlin, 1977, pp. 314-323. Zbl0363.32004
- [46] Tian G., On Kähler–Einstein metrics on certain Kähler manifolds with c1(M)>0, Invent. Math.89 (1987) 225-246. Zbl0599.53046
- [47] Varchenko A.N., Complex exponents of a singularity do not change along the stratum μ=constant, Functional Anal. Appl.16 (1982) 1-9. Zbl0498.32010
- [48] Varchenko A.N., Semi-continuity of the complex singularity index, Functional Anal. Appl.17 (1983) 307-308. Zbl0536.32005
- [49] Varchenko A.N., Asymptotic Hodge structure …, Math. USSR Izv.18 (1992) 469-512. Zbl0489.14003
- [50] Yau S.T., On the Ricci curvature of a complex Kähler manifold and the complex Monge–Ampère equation I, Comm. Pure and Appl. Math.31 (1978) 339-411. Zbl0369.53059
Citations in EuDML Documents
top- Charles P. Boyer, Krzysztof Galicki, Michael Nakamaye, Einstein metrics on rational homology 7-spheres
- Claudio Arezzo, Alessandro Ghigi, Symmetries and Kähler-Einstein metrics
- Mattias Jonsson, Mircea Mustaţă, Valuations and asymptotic invariants for sequences of ideals
- Brian Lehmann, Algebraic bounds on analytic multiplier ideals
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.