Semi-continuity of complex singularity exponents and Kähler–Einstein metrics on Fano orbifolds

Jean-Pierre Demailly; János Kollár

Annales scientifiques de l'École Normale Supérieure (2001)

  • Volume: 34, Issue: 4, page 525-556
  • ISSN: 0012-9593

How to cite


Demailly, Jean-Pierre, and Kollár, János. "Semi-continuity of complex singularity exponents and Kähler–Einstein metrics on Fano orbifolds." Annales scientifiques de l'École Normale Supérieure 34.4 (2001): 525-556. <>.

author = {Demailly, Jean-Pierre, Kollár, János},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {Arnold multiplicity; multiplier ideal sheaf; Lelong number; complex singularity exponent; Kähler-Einstein metrics; Fano orbifolds; del Pezzo surfaces},
language = {eng},
number = {4},
pages = {525-556},
publisher = {Elsevier},
title = {Semi-continuity of complex singularity exponents and Kähler–Einstein metrics on Fano orbifolds},
url = {},
volume = {34},
year = {2001},

AU - Demailly, Jean-Pierre
AU - Kollár, János
TI - Semi-continuity of complex singularity exponents and Kähler–Einstein metrics on Fano orbifolds
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2001
PB - Elsevier
VL - 34
IS - 4
SP - 525
EP - 556
LA - eng
KW - Arnold multiplicity; multiplier ideal sheaf; Lelong number; complex singularity exponent; Kähler-Einstein metrics; Fano orbifolds; del Pezzo surfaces
UR -
ER -


  1. [1] Angehrn U., Siu Y.-T., Effective freeness and point separation for adjoint bundles, Invent. Math.122 (1995) 291-308. Zbl0847.32035MR1358978
  2. [2] Andreotti A., Vesentini E., Carleman estimates for the Laplace–Beltrami equation in complex manifolds, Publ. Math. I.H.E.S.25 (1965) 81-130. Zbl0138.06604
  3. [3] Arnold V.I., Gusein-Zade S.M., Varchenko A.N., Singularities of Differentiable Maps, Progress in Math., Birkhäuser, 1985. MR777682
  4. [4] Aubin T., Équations du type Monge–Ampère sur les variétés kählériennes compactes, C. R. Acad. Sci. Paris Ser. A283 (1976) 119-121, Bull. Sci. Math.102 (1978) 63-95. Zbl0333.53040
  5. [5] Barlet D., Développements asymptotiques des fonctions obtenues par intégration sur les fibres, Invent. Math.68 (1982) 129-174. Zbl0508.32003MR666639
  6. [6] Bombieri E., Algebraic values of meromorphic maps, Invent. Math.10 (1970) 267-287, Addendum, Invent. Math.11 (1970) 163-166. Zbl0214.33702MR306201
  7. [7] Boyer C., Galicki K., New Sasakian–Einstein 5-manifolds as links of isolated hypersurface singularities, Manuscript, February 2000. 
  8. [8] Demailly J.-P., Nombres de Lelong généralisés, théorèmes d'intégralité et d'analyticité, Acta Math.159 (1987) 153-169. Zbl0629.32011MR908144
  9. [9] Demailly J.-P., Transcendental proof of a generalized Kawamata–Viehweg vanishing theorem, C. R. Acad. Sci. Paris Sér. I Math.309 (1989) 123-126, in: Berenstein C.A., Struppa D.C. (Eds.), Proceedings of the Conference “Geometrical and Algebraical Aspects in Several Complex Variables” held at Cetraro (Italy), 1989, pp. 81-94. Zbl1112.32303
  10. [10] Demailly J.-P., Singular hermitian metrics on positive line bundles, in: Hulek K., Peternell T., Schneider M., Schreyer F. (Eds.), Proc. Conf. Complex algebraic varieties (Bayreuth, April 2–6, 1990), Lecture Notes in Math., 1507, Springer-Verlag, Berlin, 1992. Zbl0784.32024
  11. [11] Demailly J.-P., Regularization of closed positive currents and intersection theory, J. Alg. Geom.1 (1992) 361-409. Zbl0777.32016MR1158622
  12. [12] Demailly J.-P., Monge–Ampère operators, Lelong numbers and intersection theory, in: Ancona V., Silva A. (Eds.), Complex Analysis and Geometry, Univ. Series in Math., Plenum Press, New York, 1993. Zbl0792.32006
  13. [13] Demailly J.-P., A numerical criterion for very ample line bundles, J. Differential Geom.37 (1993) 323-374. Zbl0783.32013MR1205448
  14. [14] Demailly J.-P., L2 vanishing theorems for positive line bundles and adjunction theory, Lecture Notes of the CIME Session, Transcendental Methods in Algebraic Geometry, Cetraro, Italy, July 1994, 96 p, Duke e-prints alg-geom/9410022. Zbl0883.14005
  15. [15] Dolgachev I., Weighted projective varieties, in: Group Actions and Vector Fields, Proc. Polish–North Am. Semin., Vancouver 1981, Lect. Notes in Math., 956, Springer-Verlag, 1982, pp. 34-71. Zbl0516.14014
  16. [16] Fletcher A.R., Working with weighted complete intersections, Preprint MPI/89-35, Max-Planck Institut für Mathematik, Bonn, 1989, Revised version: Iano–Fletcher A.R., in: Corti A., Reid M. (Eds.), Explicit Birational Geometry of 3-folds, Cambridge Univ. Press, 2000, pp. 101–173. Zbl0960.14027
  17. [17] Fujiki A., Kobayashi R., Lu S.S.Y., On the fundamental group of certain open normal surfaces, Saitama Math. J.11 (1993) 15-20. Zbl0798.14009MR1259272
  18. [18] Futaki A., An obstruction to the existence of Einstein–Kähler metrics, Invent. Math.73 (1983) 437-443. Zbl0506.53030
  19. [19] Hironaka H., Resolution of singularities of an algebraic variety over a field of characteristic zero, I, II, Ann. Math.79 (1964) 109-326. Zbl0122.38603MR199184
  20. [20] Hörmander L., An Introduction to Complex Analysis in Several Variables, North-Holland Math. Libr., 7, North-Holland, Amsterdam, 1973. Zbl0271.32001MR1045639
  21. [21] Johnson J.M., Kollár J., Kähler–Einstein metrics on log del Pezzo surfaces in weighted projective 3-spaces, Ann. Inst. Fourier51 (2001) 69-79. Zbl0974.14023
  22. [22] Kawamata Y., Matsuda K., Matsuki K., Introduction to the minimal model problem, Adv. Stud. Pure Math.10 (1987) 283-360. Zbl0672.14006MR946243
  23. [23] Kollár J., (with 14 coauthors) , Flips and Abundance for Algebraic Threefolds, Astérisque, 211, 1992. Zbl0814.14038
  24. [24] Kollár J., Shafarevich Maps and Automorphic Forms, Princeton Univ. Press, 1995. Zbl0871.14015MR1341589
  25. [25] Kollár J., Singularities of pairs, Algebraic Geometry, Santa Cruz, 1995, in: Proceedings of Symposia in Pure Math. Vol. 62, AMS, 1997, pp. 221-287. Zbl0905.14002MR1492525
  26. [26] Lelong P., Intégration sur un ensemble analytique complexe, Bull. Soc. Math. France85 (1957) 239-262. Zbl0079.30901MR95967
  27. [27] Lelong P., Plurisubharmonic Functions and Positive Differential Forms, Gordon and Breach, New York, and Dunod, Paris, 1969. Zbl0195.11604
  28. [28] Lichnerowicz A., Sur les transformations analytiques des variétés kählériennes, C. R. Acad. Sci. Paris244 (1957) 3011-3014. Zbl0080.37501MR94479
  29. [29] Lichtin B., An upper semicontinuity theorem for some leading poles of |f|2s, in: Complex Analytic Singularities, Adv. Stud. Pure Math., 8, North-Holland, Amsterdam, 1987, pp. 241-272. Zbl0615.32007MR894297
  30. [30] Lichtin B., Poles of |f(z,w)|2s and roots of the B-function, Ark. för Math.27 (1989) 283-304. Zbl0719.32016MR1022282
  31. [31] Manivel L., Un théorème de prolongement L2 de sections holomorphes d'un fibré vectoriel, Math. Z.212 (1993) 107-122. Zbl0789.32015MR1200166
  32. [32] Matsushima Y., Sur la structure du groupe d'homéomorphismes analytiques d'une certaine variété kählérienne, Nagoya Math. J.11 (1957) 145-150. Zbl0091.34803MR94478
  33. [33] Nadel A.M., Multiplier ideal sheaves and existence of Kähler–Einstein metrics of positive scalar curvature, Proc. Nat. Acad. Sci. USA86 (1989) 7299-7300. Zbl0711.53056
  34. [34] Nadel A.M., Multiplier ideal sheaves and Kähler–Einstein metrics of positive scalar curvature, Annals of Math.132 (1990) 549-596. Zbl0731.53063
  35. [35] Ohsawa T., Takegoshi K., On the extension of L2 holomorphic functions, Math. Z.195 (1987) 197-204. Zbl0625.32011MR892051
  36. [36] Ohsawa T., On the extension of L2 holomorphic functions, II, Publ. RIMS, Kyoto Univ.24 (1988) 265-275. Zbl0653.32012MR944862
  37. [37] Phong D.H., Sturm J., Algebraic estimates, stability of local zeta functions, and uniform estimates for distribution functions, preprint, January 1999, to appear in Ann. of Math. Zbl0995.11065MR1792297
  38. [38] Phong D.H., Sturm J., On a conjecture of Demailly and Kollár, preprint, April 2000. Zbl0978.32004MR1803721
  39. [39] Shokurov V., 3-fold log flips, Izv. Russ. Acad. Nauk Ser. Mat.56 (1992) 105-203. MR1162635
  40. [40] Siu Y.T., Analyticity of sets associated to Lelong numbers and the extension of closed positive currents, Invent. Math.27 (1974) 53-156. Zbl0289.32003MR352516
  41. [41] Siu Y.T., Lectures on Hermitian–Einstein metrics for stable bundles and Kähler–Einstein metrics, DMV Seminar (Band 8), Birkhäuser-Verlag, Basel, 1987. Zbl0631.53004
  42. [42] Siu Y.T., The existence of Kähler–Einstein metrics on manifolds with positive anticanonical line bundle and a suitable finite symmetry group, Ann. of Math.127 (1988) 585-627. Zbl0651.53035
  43. [43] Siu Y.T., An effective Matsusaka big theorem, Ann. Inst. Fourier.43 (1993) 1387-1405. Zbl0803.32017MR1275204
  44. [44] Skoda H., Sous-ensembles analytiques d'ordre fini ou infini dans Cn, Bull. Soc. Math. France100 (1972) 353-408. Zbl0246.32009MR352517
  45. [45] Skoda H., Estimations L2pour l’opérateur ¯ et applications arithmétiques, in: Séminaire P. Lelong (Analyse), année 1975/76, Lecture Notes in Math., 538, Springer-Verlag, Berlin, 1977, pp. 314-323. Zbl0363.32004
  46. [46] Tian G., On Kähler–Einstein metrics on certain Kähler manifolds with c1(M)&gt;0, Invent. Math.89 (1987) 225-246. Zbl0599.53046
  47. [47] Varchenko A.N., Complex exponents of a singularity do not change along the stratum μ=constant, Functional Anal. Appl.16 (1982) 1-9. Zbl0498.32010
  48. [48] Varchenko A.N., Semi-continuity of the complex singularity index, Functional Anal. Appl.17 (1983) 307-308. Zbl0536.32005
  49. [49] Varchenko A.N., Asymptotic Hodge structure …, Math. USSR Izv.18 (1992) 469-512. Zbl0489.14003
  50. [50] Yau S.T., On the Ricci curvature of a complex Kähler manifold and the complex Monge–Ampère equation I, Comm. Pure and Appl. Math.31 (1978) 339-411. Zbl0369.53059

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.