Semiclassics of the quantum current in very strong magnetic fields
- [1] Université Paris-Sud, Mathématiques, Bâtiment 425, 91405 Orsay Cedex (France)
Annales de l’institut Fourier (2002)
- Volume: 52, Issue: 6, page 1901-1945
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topFournais, Soren. "Semiclassics of the quantum current in very strong magnetic fields." Annales de l’institut Fourier 52.6 (2002): 1901-1945. <http://eudml.org/doc/116031>.
@article{Fournais2002,
abstract = {We prove a formula for the current in an electron gas in a semiclassical limit
corresponding to strong, constant, magnetic fields. Little regularity is assumed for the
scalar potential $V$. In particular, the result can be applied to the mean field from
magnetic Thomas-Fermi theory $V_\{\{\rm MTF\}\}$. The proof is based on an estimate on the
density of states in the second Landau band.},
affiliation = {Université Paris-Sud, Mathématiques, Bâtiment 425, 91405 Orsay Cedex (France)},
author = {Fournais, Soren},
journal = {Annales de l’institut Fourier},
keywords = {semiclassics; magnetic Thomas-Ferni theory; quantum current; electron gas; density of states; second Landau band; hydrogen atoms},
language = {eng},
number = {6},
pages = {1901-1945},
publisher = {Association des Annales de l'Institut Fourier},
title = {Semiclassics of the quantum current in very strong magnetic fields},
url = {http://eudml.org/doc/116031},
volume = {52},
year = {2002},
}
TY - JOUR
AU - Fournais, Soren
TI - Semiclassics of the quantum current in very strong magnetic fields
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 6
SP - 1901
EP - 1945
AB - We prove a formula for the current in an electron gas in a semiclassical limit
corresponding to strong, constant, magnetic fields. Little regularity is assumed for the
scalar potential $V$. In particular, the result can be applied to the mean field from
magnetic Thomas-Fermi theory $V_{{\rm MTF}}$. The proof is based on an estimate on the
density of states in the second Landau band.
LA - eng
KW - semiclassics; magnetic Thomas-Ferni theory; quantum current; electron gas; density of states; second Landau band; hydrogen atoms
UR - http://eudml.org/doc/116031
ER -
References
top- W.O. Amrein, A.-M. Boutet, de Monvel, - Berthier, V. Georgescu, Notes on the N-body Problem, Part II, (1991) Zbl0850.70115
- J. Avron, I. Herbst, B. Simon, Schrödinger operators with magnetic fields. I. General interactions, Duke Math. J 45 (1978), 847-883 Zbl0399.35029MR518109
- J. E. Avron, I. W. Herbst, B. Simon, Schrödinger operators with magnetic fields. III. Atoms in homogeneous magnetic field, Comm. Math. Phys 79 (1981), 529-572 Zbl0464.35086MR623966
- S. Fournais, Semiclassics of the quantum current in a strong constant magnetic field, (1999) Zbl1106.81302
- S. Fournais, On the semiclassical asymptotics of the current and magnetisation of a non-interacting electron gas at zero temperature in a strong constant magnetic field, Ann. Henri Poincaré (2001), 1-23 Zbl0986.82006MR1877238
- S. Fournais, The magnetisation of large atoms in strong magnetic fields, Comm. Math. Phys 216 (2001), 375-393 Zbl1004.81041MR1814852
- R. Froese, R. Waxler, The spectrum of a hydrogen atom in an intense magnetic field, Rev. Math. Phys 6 (1994), 699-832 Zbl0814.35107MR1301055
- V. Georgescu, C. Gérard, On the virial theorem in quantum mechanics, Comm. Math. Phys 208 (1999), 275-281 Zbl0961.81009MR1729087
- V. Ivrii, Microlocal analysis and precise spectral asymptotics, (1998), Springer-Verlag, Berlin Zbl0906.35003MR1631419
- E. H. Lieb, Thomas-Fermi and related theories of atoms and molecules, Rev. Modern Phys 53 (1981), 603-641 Zbl1049.81679MR629207
- Elliott H. Lieb, M. Loss, Analysis, (1997), American Mathematical Society, Providence, RI Zbl0873.26002MR1415616
- E. H. Lieb, J. P. Solovej, J. Yngvason, Asymptotics of heavy atoms in high magnetic fields. II. Semiclassical regions, Comm. Math. Phys 161 (1994), 77-124 Zbl0807.47058MR1266071
- E. H. Lieb, J. P. Solovej, J. Yngvason, Asymptotics of heavy atoms in high magnetic fields. I. Lowest Landau band regions, Comm. Pure Appl. Math 47 (1994), 513-591 Zbl0800.49041MR1272387
- M. Reed, B. Simon, Methods of modern mathematical physics I-IV, (1972-78), Academic Press Zbl0401.47001MR751959
- A. V. Sobolev, The quasi-classical asymptotics of local Riesz means for the Schrödinger operator in a strong homogeneous magnetic field, Duke Math. J 74 (1994), 319-429 Zbl0824.35151MR1272980
- A. V. Sobolev, Quasi-classical asymptotics of local Riesz means for the Schrödinger operator in a moderate magnetic field, Ann. Inst. H. Poincaré Phys. Théor. 62 (1995), 325-360 Zbl0843.35024MR1343781
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.