Semiclassics of the quantum current in very strong magnetic fields

Soren Fournais[1]

  • [1] Université Paris-Sud, Mathématiques, Bâtiment 425, 91405 Orsay Cedex (France)

Annales de l’institut Fourier (2002)

  • Volume: 52, Issue: 6, page 1901-1945
  • ISSN: 0373-0956

Abstract

top
We prove a formula for the current in an electron gas in a semiclassical limit corresponding to strong, constant, magnetic fields. Little regularity is assumed for the scalar potential V . In particular, the result can be applied to the mean field from magnetic Thomas-Fermi theory V MTF . The proof is based on an estimate on the density of states in the second Landau band.

How to cite

top

Fournais, Soren. "Semiclassics of the quantum current in very strong magnetic fields." Annales de l’institut Fourier 52.6 (2002): 1901-1945. <http://eudml.org/doc/116031>.

@article{Fournais2002,
abstract = {We prove a formula for the current in an electron gas in a semiclassical limit corresponding to strong, constant, magnetic fields. Little regularity is assumed for the scalar potential $V$. In particular, the result can be applied to the mean field from magnetic Thomas-Fermi theory $V_\{\{\rm MTF\}\}$. The proof is based on an estimate on the density of states in the second Landau band.},
affiliation = {Université Paris-Sud, Mathématiques, Bâtiment 425, 91405 Orsay Cedex (France)},
author = {Fournais, Soren},
journal = {Annales de l’institut Fourier},
keywords = {semiclassics; magnetic Thomas-Ferni theory; quantum current; electron gas; density of states; second Landau band; hydrogen atoms},
language = {eng},
number = {6},
pages = {1901-1945},
publisher = {Association des Annales de l'Institut Fourier},
title = {Semiclassics of the quantum current in very strong magnetic fields},
url = {http://eudml.org/doc/116031},
volume = {52},
year = {2002},
}

TY - JOUR
AU - Fournais, Soren
TI - Semiclassics of the quantum current in very strong magnetic fields
JO - Annales de l’institut Fourier
PY - 2002
PB - Association des Annales de l'Institut Fourier
VL - 52
IS - 6
SP - 1901
EP - 1945
AB - We prove a formula for the current in an electron gas in a semiclassical limit corresponding to strong, constant, magnetic fields. Little regularity is assumed for the scalar potential $V$. In particular, the result can be applied to the mean field from magnetic Thomas-Fermi theory $V_{{\rm MTF}}$. The proof is based on an estimate on the density of states in the second Landau band.
LA - eng
KW - semiclassics; magnetic Thomas-Ferni theory; quantum current; electron gas; density of states; second Landau band; hydrogen atoms
UR - http://eudml.org/doc/116031
ER -

References

top
  1. W.O. Amrein, A.-M. Boutet, de Monvel, - Berthier, V. Georgescu, Notes on the N-body Problem, Part II, (1991) Zbl0850.70115
  2. J. Avron, I. Herbst, B. Simon, Schrödinger operators with magnetic fields. I. General interactions, Duke Math. J 45 (1978), 847-883 Zbl0399.35029MR518109
  3. J. E. Avron, I. W. Herbst, B. Simon, Schrödinger operators with magnetic fields. III. Atoms in homogeneous magnetic field, Comm. Math. Phys 79 (1981), 529-572 Zbl0464.35086MR623966
  4. S. Fournais, Semiclassics of the quantum current in a strong constant magnetic field, (1999) Zbl1106.81302
  5. S. Fournais, On the semiclassical asymptotics of the current and magnetisation of a non-interacting electron gas at zero temperature in a strong constant magnetic field, Ann. Henri Poincaré (2001), 1-23 Zbl0986.82006MR1877238
  6. S. Fournais, The magnetisation of large atoms in strong magnetic fields, Comm. Math. Phys 216 (2001), 375-393 Zbl1004.81041MR1814852
  7. R. Froese, R. Waxler, The spectrum of a hydrogen atom in an intense magnetic field, Rev. Math. Phys 6 (1994), 699-832 Zbl0814.35107MR1301055
  8. V. Georgescu, C. Gérard, On the virial theorem in quantum mechanics, Comm. Math. Phys 208 (1999), 275-281 Zbl0961.81009MR1729087
  9. V. Ivrii, Microlocal analysis and precise spectral asymptotics, (1998), Springer-Verlag, Berlin Zbl0906.35003MR1631419
  10. E. H. Lieb, Thomas-Fermi and related theories of atoms and molecules, Rev. Modern Phys 53 (1981), 603-641 Zbl1049.81679MR629207
  11. Elliott H. Lieb, M. Loss, Analysis, (1997), American Mathematical Society, Providence, RI Zbl0873.26002MR1415616
  12. E. H. Lieb, J. P. Solovej, J. Yngvason, Asymptotics of heavy atoms in high magnetic fields. II. Semiclassical regions, Comm. Math. Phys 161 (1994), 77-124 Zbl0807.47058MR1266071
  13. E. H. Lieb, J. P. Solovej, J. Yngvason, Asymptotics of heavy atoms in high magnetic fields. I. Lowest Landau band regions, Comm. Pure Appl. Math 47 (1994), 513-591 Zbl0800.49041MR1272387
  14. M. Reed, B. Simon, Methods of modern mathematical physics I-IV, (1972-78), Academic Press Zbl0401.47001MR751959
  15. A. V. Sobolev, The quasi-classical asymptotics of local Riesz means for the Schrödinger operator in a strong homogeneous magnetic field, Duke Math. J 74 (1994), 319-429 Zbl0824.35151MR1272980
  16. A. V. Sobolev, Quasi-classical asymptotics of local Riesz means for the Schrödinger operator in a moderate magnetic field, Ann. Inst. H. Poincaré Phys. Théor. 62 (1995), 325-360 Zbl0843.35024MR1343781

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.