The geometry of null systems, Jordan algebras and von Staudt's theorem

Wolfgang Bertram[1]

  • [1] Université Nancy I, Institut Élie Cartan, BP 239, 54506 Vandoeuvre-les-Nancy Cedex (France)

Annales de l’institut Fourier (2003)

  • Volume: 53, Issue: 1, page 193-225
  • ISSN: 0373-0956

Abstract

top
We characterize an important class of generalized projective geometries ( X , X ' ) by the following essentially equivalent properties: (1) ( X , X ' ) admits a central null-system; (2) ( X , X ' ) admits inner polarities: (3) ( X , X ' ) is associated to a unital Jordan algebra. These geometries, called of the first kind, play in the category of generalized projective geometries a rôle comparable to the one of the projective line in the category of ordinary projective geometries. In this general set-up, we prove an analogue of von Staudt’s theorem which generalizes similar results by L.K. Hua.

How to cite

top

Bertram, Wolfgang. "The geometry of null systems, Jordan algebras and von Staudt's theorem." Annales de l’institut Fourier 53.1 (2003): 193-225. <http://eudml.org/doc/116033>.

@article{Bertram2003,
abstract = {We characterize an important class of generalized projective geometries $(X,X^\{\prime \})$ by the following essentially equivalent properties: (1) $(X,X^\{\prime \})$ admits a central null-system; (2) $(X,X^\{\prime \})$ admits inner polarities: (3) $(X,X^\{\prime \})$ is associated to a unital Jordan algebra. These geometries, called of the first kind, play in the category of generalized projective geometries a rôle comparable to the one of the projective line in the category of ordinary projective geometries. In this general set-up, we prove an analogue of von Staudt’s theorem which generalizes similar results by L.K. Hua.},
affiliation = {Université Nancy I, Institut Élie Cartan, BP 239, 54506 Vandoeuvre-les-Nancy Cedex (France)},
author = {Bertram, Wolfgang},
journal = {Annales de l’institut Fourier},
keywords = {null-system; projective geometry; polar geometry; symmetric space; Jordan algebra},
language = {eng},
number = {1},
pages = {193-225},
publisher = {Association des Annales de l'Institut Fourier},
title = {The geometry of null systems, Jordan algebras and von Staudt's theorem},
url = {http://eudml.org/doc/116033},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Bertram, Wolfgang
TI - The geometry of null systems, Jordan algebras and von Staudt's theorem
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 1
SP - 193
EP - 225
AB - We characterize an important class of generalized projective geometries $(X,X^{\prime })$ by the following essentially equivalent properties: (1) $(X,X^{\prime })$ admits a central null-system; (2) $(X,X^{\prime })$ admits inner polarities: (3) $(X,X^{\prime })$ is associated to a unital Jordan algebra. These geometries, called of the first kind, play in the category of generalized projective geometries a rôle comparable to the one of the projective line in the category of ordinary projective geometries. In this general set-up, we prove an analogue of von Staudt’s theorem which generalizes similar results by L.K. Hua.
LA - eng
KW - null-system; projective geometry; polar geometry; symmetric space; Jordan algebra
UR - http://eudml.org/doc/116033
ER -

References

top
  1. E. Artin, Geometric Algebra, (1966), Interscience, New York Zbl0077.02101MR82463
  2. M. Berger, Geometry, 2 volumes (1994), Springer-Verlag, Berlin Zbl0606.51001MR1295239
  3. W. Bertram, The geometry of Jordan and Lie structures, 1754 (2000), Springer, Berlin Zbl1014.17024MR1809879
  4. W. Bertram, From linear algebra via affine algebra to projective algebra, (2001) Zbl1063.17020MR2031788
  5. W. Bertram, Generalized projective geometries: general theory and equivalence with Jordan structures, (2001) Zbl1035.17043MR2070568
  6. H. Braun, Doppelverhältnisse in Jordan-Algebren, Abh. Math. Sem. Hamburg 32 (1968), 25-51 Zbl0175.31101MR233858
  7. H. Braun, M. Koecher, Jordan-Algebren, (1965), Springer-Verlag, Berlin Zbl0145.26001MR204470
  8. W.L. Chow, On the geometry of algebraic homogeneous spaces, Ann. Math 50 (1949), 32-67 Zbl0040.22901MR28057
  9. J. Faraut., A. Koranyi, Analysis on Symmetric Cones, (1994), Clarendon Press, Oxford Zbl0841.43002MR1446489
  10. L.-K. Hua, Geometries of Matrices. I. Generalizations of von Staudt's theorem, Trans. A.M.S 57 (1945), 441-481 Zbl0063.02922MR12679
  11. P. Jordan J. von Neumann, E. Wigner, On an algebraic generalization of the quantum mechanical formalism, Ann. Math 35 (1934), 29-64 Zbl0008.42103MR1503141
  12. M. Koecher, Gruppen und Lie-Algebren von rationalen Funktionen, Math. Z 109 (1969), 349-392 Zbl0181.04503MR251092
  13. O. Loos, Symmetric Spaces I, (1969), Benjamin, New York Zbl0175.48601
  14. O. Loos, Jordan Pairs, 460 (1975), Springer, New York Zbl0301.17003MR444721
  15. O. Loos, Elementary Groups and Stability for Jordan Pairs, K-Theory 9 (1995), 77-116 Zbl0835.17021MR1340841
  16. T.A. Springer, Jordan Algebras and Algebraic Groups, (1973), Springer Verlag, New York Zbl0259.17003MR379618

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.