The geometry of null systems, Jordan algebras and von Staudt's theorem
- [1] Université Nancy I, Institut Élie Cartan, BP 239, 54506 Vandoeuvre-les-Nancy Cedex (France)
Annales de l’institut Fourier (2003)
- Volume: 53, Issue: 1, page 193-225
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBertram, Wolfgang. "The geometry of null systems, Jordan algebras and von Staudt's theorem." Annales de l’institut Fourier 53.1 (2003): 193-225. <http://eudml.org/doc/116033>.
@article{Bertram2003,
abstract = {We characterize an important class of generalized projective geometries $(X,X^\{\prime \})$ by the
following essentially equivalent properties: (1) $(X,X^\{\prime \})$ admits a central null-system;
(2) $(X,X^\{\prime \})$ admits inner polarities: (3) $(X,X^\{\prime \})$ is associated to a unital Jordan
algebra. These geometries, called of the first kind, play in the category of generalized
projective geometries a rôle comparable to the one of the projective line in the category
of ordinary projective geometries. In this general set-up, we prove an analogue of von
Staudt’s theorem which generalizes similar results by L.K. Hua.},
affiliation = {Université Nancy I, Institut Élie Cartan, BP 239, 54506 Vandoeuvre-les-Nancy Cedex (France)},
author = {Bertram, Wolfgang},
journal = {Annales de l’institut Fourier},
keywords = {null-system; projective geometry; polar geometry; symmetric space; Jordan algebra},
language = {eng},
number = {1},
pages = {193-225},
publisher = {Association des Annales de l'Institut Fourier},
title = {The geometry of null systems, Jordan algebras and von Staudt's theorem},
url = {http://eudml.org/doc/116033},
volume = {53},
year = {2003},
}
TY - JOUR
AU - Bertram, Wolfgang
TI - The geometry of null systems, Jordan algebras and von Staudt's theorem
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 1
SP - 193
EP - 225
AB - We characterize an important class of generalized projective geometries $(X,X^{\prime })$ by the
following essentially equivalent properties: (1) $(X,X^{\prime })$ admits a central null-system;
(2) $(X,X^{\prime })$ admits inner polarities: (3) $(X,X^{\prime })$ is associated to a unital Jordan
algebra. These geometries, called of the first kind, play in the category of generalized
projective geometries a rôle comparable to the one of the projective line in the category
of ordinary projective geometries. In this general set-up, we prove an analogue of von
Staudt’s theorem which generalizes similar results by L.K. Hua.
LA - eng
KW - null-system; projective geometry; polar geometry; symmetric space; Jordan algebra
UR - http://eudml.org/doc/116033
ER -
References
top- E. Artin, Geometric Algebra, (1966), Interscience, New York Zbl0077.02101MR82463
- M. Berger, Geometry, 2 volumes (1994), Springer-Verlag, Berlin Zbl0606.51001MR1295239
- W. Bertram, The geometry of Jordan and Lie structures, 1754 (2000), Springer, Berlin Zbl1014.17024MR1809879
- W. Bertram, From linear algebra via affine algebra to projective algebra, (2001) Zbl1063.17020MR2031788
- W. Bertram, Generalized projective geometries: general theory and equivalence with Jordan structures, (2001) Zbl1035.17043MR2070568
- H. Braun, Doppelverhältnisse in Jordan-Algebren, Abh. Math. Sem. Hamburg 32 (1968), 25-51 Zbl0175.31101MR233858
- H. Braun, M. Koecher, Jordan-Algebren, (1965), Springer-Verlag, Berlin Zbl0145.26001MR204470
- W.L. Chow, On the geometry of algebraic homogeneous spaces, Ann. Math 50 (1949), 32-67 Zbl0040.22901MR28057
- J. Faraut., A. Koranyi, Analysis on Symmetric Cones, (1994), Clarendon Press, Oxford Zbl0841.43002MR1446489
- L.-K. Hua, Geometries of Matrices. I. Generalizations of von Staudt's theorem, Trans. A.M.S 57 (1945), 441-481 Zbl0063.02922MR12679
- P. Jordan J. von Neumann, E. Wigner, On an algebraic generalization of the quantum mechanical formalism, Ann. Math 35 (1934), 29-64 Zbl0008.42103MR1503141
- M. Koecher, Gruppen und Lie-Algebren von rationalen Funktionen, Math. Z 109 (1969), 349-392 Zbl0181.04503MR251092
- O. Loos, Symmetric Spaces I, (1969), Benjamin, New York Zbl0175.48601
- O. Loos, Jordan Pairs, 460 (1975), Springer, New York Zbl0301.17003MR444721
- O. Loos, Elementary Groups and Stability for Jordan Pairs, K-Theory 9 (1995), 77-116 Zbl0835.17021MR1340841
- T.A. Springer, Jordan Algebras and Algebraic Groups, (1973), Springer Verlag, New York Zbl0259.17003MR379618
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.