Algebras with finitely generated invariant subalgebras

Ivan V. Arzhantsev[1]

  • [1] Moscow State University, Department of Mathematics and Mechanics, Chair of Higher Algebra, Vorobievy Gory, GSP-2, Moscow 119992 (Russie)

Annales de l’institut Fourier (2003)

  • Volume: 53, Issue: 2, page 379-398
  • ISSN: 0373-0956

Abstract

top
We classify all finitely generated integral algebras with a rational action of a reductive group such that any invariant subalgebra is finitely generated. Some results on affine embeddings of homogeneous spaces are also given.

How to cite

top

Arzhantsev, Ivan V.. "Algebras with finitely generated invariant subalgebras." Annales de l’institut Fourier 53.2 (2003): 379-398. <http://eudml.org/doc/116040>.

@article{Arzhantsev2003,
abstract = {We classify all finitely generated integral algebras with a rational action of a reductive group such that any invariant subalgebra is finitely generated. Some results on affine embeddings of homogeneous spaces are also given.},
affiliation = {Moscow State University, Department of Mathematics and Mechanics, Chair of Higher Algebra, Vorobievy Gory, GSP-2, Moscow 119992 (Russie)},
author = {Arzhantsev, Ivan V.},
journal = {Annales de l’institut Fourier},
keywords = {algebraic groups; rational $G$-algebras; quasi-affine homogeneous spaces; affine embeddings; rational -algebras},
language = {eng},
number = {2},
pages = {379-398},
publisher = {Association des Annales de l'Institut Fourier},
title = {Algebras with finitely generated invariant subalgebras},
url = {http://eudml.org/doc/116040},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Arzhantsev, Ivan V.
TI - Algebras with finitely generated invariant subalgebras
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 2
SP - 379
EP - 398
AB - We classify all finitely generated integral algebras with a rational action of a reductive group such that any invariant subalgebra is finitely generated. Some results on affine embeddings of homogeneous spaces are also given.
LA - eng
KW - algebraic groups; rational $G$-algebras; quasi-affine homogeneous spaces; affine embeddings; rational -algebras
UR - http://eudml.org/doc/116040
ER -

References

top
  1. D. N. Akhiezer, Dense orbits with two ends, Izv. Akad. Nauk SSSR, Ser. Mat (in Russian) 41 (1977), 308-324 Zbl0373.14016MR472848
  2. F. Bien, A. Borel, Sous-groupes épimorphiques de groupes linéaires algébriques I, C. R. Acad. Sci. Paris, Série I 315 (1992), 649-653 Zbl0767.20017MR1183796
  3. M. Brion, Groupe de Picard et nombres caractéristiques des variétés sphériques, Duke Math. J 58 (1989), 397-424 Zbl0701.14052MR1016427
  4. F. D. Grosshans, Algebraic Homogeneous Spaces and Invariant Theory, 1673 (1997), Springer-Verlag, Berlin Zbl0886.14020MR1489234
  5. G. Horroks, Fixed point schemes of additive group actions, Topology 8 (1969), 233-242 Zbl0159.22401MR244261
  6. J. E. Humphreys, Linear Algebraic Groups, 21 (1975), Springer-Verlag, New-York Zbl0471.20029MR396773
  7. G. Kempf, Instability in invariant theory, Ann. of Math 108 (1978), 299-316 Zbl0406.14031MR506989
  8. I. A. Latypov, Homogeneous spaces of compact connected Lie groups which admit nontrivial invariant algebras, Journal of Lie Theory 9 (1999), 355-360 Zbl1023.22013MR1718227
  9. M. W. Liebeck, G. M. Seitz, Variations on a theme of Steinberg, Journal of Algebra 260 (2003), 261-297 Zbl1054.20026MR1973585
  10. D. Luna, Slices étales, Bull. Soc. Math. France, Paris Mémoire 33 (1973), 81-105 Zbl0286.14014MR342523
  11. D. Luna, Adhérences d'orbite et invariants, Invent. Math 29 (1975), 231-238 Zbl0315.14018MR376704
  12. D. Luna, R. W. Richardson, A generalization of the Chevalley restriction theorem, Duke Math. J 46 (1979), 487-496 Zbl0444.14010MR544240
  13. G. J. McNinch, Dimensional criteria for semisimplicity of representations, Proc. London Math. Soc (3) 76 (1998), 95-149 Zbl0891.20032MR1476899
  14. V. L. Popov, Classification of three-dimensional affine algebraic varieties that are quasihomogeneous with respect to an algebraic group, Izv. Akad. Nauk SSSR, Ser. Mat. (in Russian) 39 (1975), 566-609 Zbl0308.14009MR376702
  15. V. L. Popov, E. B. Vinberg, A certain class of quasihomogeneous affine algebraic varieties, Izv. Akad. Nauk SSSR, Ser. Mat (in Russian) 36 (1972), 749-764 Zbl0248.14014MR313260
  16. V. L. Popov, E. B. Vinberg, Invariant Theory, VINITI, Moscow, 1989 vol. 5 (1989), 137-309 Zbl0735.14010
  17. R. W. Richardson, Affine coset spaces of reductive algebraic groups, Bull. London Math. Soc 9 (1977), 38-41 Zbl0355.14020MR437549
  18. A. A. Sukhanov, Description of the observable subgroups of linear algebraic groups, Mat. Sbornik (in Russian) 137 (1988), 90-102 Zbl0663.20043MR965881
  19. I. V. Arzhantsev, D. A. Timashev, Affine embeddings with a finite number of orbits, Transformation Groups 6 (2001), 101-110 Zbl1010.14011MR1835666
  20. D. N. Akhiezer, Dense orbits with two ends, Math. USSR-Izv. (English trans.) 11 (1977), 293-307 Zbl0378.14009
  21. V. L. Popov, Classification of three-dimensional affine algebraic varieties that are quasihomogeneous with respect to an algebraic group, Math. USSR-Izv. (English trans.) 9 (1975), 535-576 Zbl0331.14026MR376702
  22. V. L. Popov, E. B. Vinberg, A certain class of quasihomogeneous affine algebraic varieties, Math. USSR-Izv. (English trans.) 6 (1972), 743-758 Zbl0255.14016
  23. A. A. Sukhanov, Description of the observable subgroups of linear algebraic groups, Math. USSR-Sb. (English trans.) 65 (1990), 97-108 Zbl0663.20043MR965881
  24. V. L. Popov, E. B. Vinberg, Invariant Theory, Algebraic Geometry IV vol. 55 (1994), 123-278, Springer-Verlag, Berlin Zbl0789.14008

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.