Algebras with finitely generated invariant subalgebras
- [1] Moscow State University, Department of Mathematics and Mechanics, Chair of Higher Algebra, Vorobievy Gory, GSP-2, Moscow 119992 (Russie)
Annales de l’institut Fourier (2003)
- Volume: 53, Issue: 2, page 379-398
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topArzhantsev, Ivan V.. "Algebras with finitely generated invariant subalgebras." Annales de l’institut Fourier 53.2 (2003): 379-398. <http://eudml.org/doc/116040>.
@article{Arzhantsev2003,
abstract = {We classify all finitely generated integral algebras with a rational action of a
reductive group such that any invariant subalgebra is finitely generated. Some results on
affine embeddings of homogeneous spaces are also given.},
affiliation = {Moscow State University, Department of Mathematics and Mechanics, Chair of Higher Algebra, Vorobievy Gory, GSP-2, Moscow 119992 (Russie)},
author = {Arzhantsev, Ivan V.},
journal = {Annales de l’institut Fourier},
keywords = {algebraic groups; rational $G$-algebras; quasi-affine homogeneous spaces; affine embeddings; rational -algebras},
language = {eng},
number = {2},
pages = {379-398},
publisher = {Association des Annales de l'Institut Fourier},
title = {Algebras with finitely generated invariant subalgebras},
url = {http://eudml.org/doc/116040},
volume = {53},
year = {2003},
}
TY - JOUR
AU - Arzhantsev, Ivan V.
TI - Algebras with finitely generated invariant subalgebras
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 2
SP - 379
EP - 398
AB - We classify all finitely generated integral algebras with a rational action of a
reductive group such that any invariant subalgebra is finitely generated. Some results on
affine embeddings of homogeneous spaces are also given.
LA - eng
KW - algebraic groups; rational $G$-algebras; quasi-affine homogeneous spaces; affine embeddings; rational -algebras
UR - http://eudml.org/doc/116040
ER -
References
top- D. N. Akhiezer, Dense orbits with two ends, Izv. Akad. Nauk SSSR, Ser. Mat (in Russian) 41 (1977), 308-324 Zbl0373.14016MR472848
- F. Bien, A. Borel, Sous-groupes épimorphiques de groupes linéaires algébriques I, C. R. Acad. Sci. Paris, Série I 315 (1992), 649-653 Zbl0767.20017MR1183796
- M. Brion, Groupe de Picard et nombres caractéristiques des variétés sphériques, Duke Math. J 58 (1989), 397-424 Zbl0701.14052MR1016427
- F. D. Grosshans, Algebraic Homogeneous Spaces and Invariant Theory, 1673 (1997), Springer-Verlag, Berlin Zbl0886.14020MR1489234
- G. Horroks, Fixed point schemes of additive group actions, Topology 8 (1969), 233-242 Zbl0159.22401MR244261
- J. E. Humphreys, Linear Algebraic Groups, 21 (1975), Springer-Verlag, New-York Zbl0471.20029MR396773
- G. Kempf, Instability in invariant theory, Ann. of Math 108 (1978), 299-316 Zbl0406.14031MR506989
- I. A. Latypov, Homogeneous spaces of compact connected Lie groups which admit nontrivial invariant algebras, Journal of Lie Theory 9 (1999), 355-360 Zbl1023.22013MR1718227
- M. W. Liebeck, G. M. Seitz, Variations on a theme of Steinberg, Journal of Algebra 260 (2003), 261-297 Zbl1054.20026MR1973585
- D. Luna, Slices étales, Bull. Soc. Math. France, Paris Mémoire 33 (1973), 81-105 Zbl0286.14014MR342523
- D. Luna, Adhérences d'orbite et invariants, Invent. Math 29 (1975), 231-238 Zbl0315.14018MR376704
- D. Luna, R. W. Richardson, A generalization of the Chevalley restriction theorem, Duke Math. J 46 (1979), 487-496 Zbl0444.14010MR544240
- G. J. McNinch, Dimensional criteria for semisimplicity of representations, Proc. London Math. Soc (3) 76 (1998), 95-149 Zbl0891.20032MR1476899
- V. L. Popov, Classification of three-dimensional affine algebraic varieties that are quasihomogeneous with respect to an algebraic group, Izv. Akad. Nauk SSSR, Ser. Mat. (in Russian) 39 (1975), 566-609 Zbl0308.14009MR376702
- V. L. Popov, E. B. Vinberg, A certain class of quasihomogeneous affine algebraic varieties, Izv. Akad. Nauk SSSR, Ser. Mat (in Russian) 36 (1972), 749-764 Zbl0248.14014MR313260
- V. L. Popov, E. B. Vinberg, Invariant Theory, VINITI, Moscow, 1989 vol. 5 (1989), 137-309 Zbl0735.14010
- R. W. Richardson, Affine coset spaces of reductive algebraic groups, Bull. London Math. Soc 9 (1977), 38-41 Zbl0355.14020MR437549
- A. A. Sukhanov, Description of the observable subgroups of linear algebraic groups, Mat. Sbornik (in Russian) 137 (1988), 90-102 Zbl0663.20043MR965881
- I. V. Arzhantsev, D. A. Timashev, Affine embeddings with a finite number of orbits, Transformation Groups 6 (2001), 101-110 Zbl1010.14011MR1835666
- D. N. Akhiezer, Dense orbits with two ends, Math. USSR-Izv. (English trans.) 11 (1977), 293-307 Zbl0378.14009
- V. L. Popov, Classification of three-dimensional affine algebraic varieties that are quasihomogeneous with respect to an algebraic group, Math. USSR-Izv. (English trans.) 9 (1975), 535-576 Zbl0331.14026MR376702
- V. L. Popov, E. B. Vinberg, A certain class of quasihomogeneous affine algebraic varieties, Math. USSR-Izv. (English trans.) 6 (1972), 743-758 Zbl0255.14016
- A. A. Sukhanov, Description of the observable subgroups of linear algebraic groups, Math. USSR-Sb. (English trans.) 65 (1990), 97-108 Zbl0663.20043MR965881
- V. L. Popov, E. B. Vinberg, Invariant Theory, Algebraic Geometry IV vol. 55 (1994), 123-278, Springer-Verlag, Berlin Zbl0789.14008
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.