### A corollary to the Evans-Griffith Syzygy theorem

Skip to main content (access key 's'),
Skip to navigation (access key 'n'),
Accessibility information (access key '0')

We classify all finitely generated integral algebras with a rational action of a reductive group such that any invariant subalgebra is finitely generated. Some results on affine embeddings of homogeneous spaces are also given.

An algorithm is described which computes generators of the kernel of derivations on k[X₁,...,Xₙ] up to a previously given bound. For w-homogeneous derivations it is shown that if the algorithm computes a generating set for the kernel then this set is minimal.

We establish several finiteness characterizations and equations for the cardinality and the length of the set of overrings of rings with nontrivial zero divisors and integrally closed in their total ring of fractions. Similar properties are also obtained for related extensions of commutative rings that are not necessarily integral domains. Numerical characterizations are obtained for rings with some finiteness conditions afterwards.

In this paper we characterize commutative rings with finite dimensional classical ring of quotients. To illustrate the diversity of behavior of these rings we examine the case of local rings and FPF rings. Our results extend earlier work on rings with zero-dimensional rings of quotients.