Actions of Hopf algebras on fully bounded Noetherian rings.
Let H be a Hopf algebra over a field k such that every finite-dimensional (left) H-module is semisimple. We give a counterpart of the first fundamental theorem of the classical invariant theory for locally finite, finitely generated (commutative) H-module algebras, and for local, complete H-module algebras. Also, we prove that if H acts on the k-algebra A = k[[X₁,...,Xₙ]] in such a way that the unique maximal ideal in A is invariant, then the algebra of invariants is a noetherian Cohen-Macaulay...
Let A be a k-algebra and G be a group acting on A. We show that G also acts on the Hochschild cohomology algebra HH ⊙ (A) and that there is a monomorphism of rings HH ⊙ (A) G→HH ⊙ (A[G]). That allows us to show the existence of a monomorphism from HH ⊙ (Ã) G into HH ⊙ (A), where à is a Galois covering with group G.
We compute Hochschild homology and cohomology of a class of generalized Weyl algebras, introduced by V. V. Bavula in St. Petersbourg Math. Journal, 4 (1) (1999), 71-90. Examples of such algebras are the n-th Weyl algebras, , primitive quotients of , and subalgebras of invariants of these algebras under finite cyclic groups of automorphisms. We answer a question of Bavula–Jordan (Trans. A.M.S., 353 (2) (2001), 769-794) concerning the generators of the group of automorphisms of a generalized Weyl...
We recall first Mather's Lemma providing effective necessary and sufficient conditions for a connected submanifold to be contained in an orbit. We show that two homogeneous polynomials having isomorphic Milnor algebras are right-equivalent.
2000 Mathematics Subject Classification: 16R10, 16R30.The classical theorem of Weitzenböck states that the algebra of invariants K[X]^g of a single unipotent transformation g ∈ GLm(K) acting on the polynomial algebra K[X] = K[x1, . . . , xm] over a field K of characteristic 0 is finitely generated.Partially supported by Grant MM-1106/2001 of the Bulgarian National Science Fund.
Let be a finite group and a subgroup. Denote by (or ) the crossed product of and (or ) with respect to the adjoint action of the latter on the former. Consider the algebra generated by and , where we regard as an idempotent operator on for a certain conditional expectation of onto . Let us call the basic construction from the conditional expectation . The paper constructs a crossed product algebra , and proves that there is an algebra isomorphism between and .
We introduce the concept of geometrically reductive quantum group which is a generalization of the Mumford definition of geometrically reductive algebraic group. We prove that if G is a geometrically reductive quantum group and acts rationally on a commutative and finitely generated algebra A, then the algebra of invariants is finitely generated. We also prove that in characteristic 0 a quantum group G is geometrically reductive if and only if every rational G-module is semisimple, and that in...