Finiteness property for generalized abelian integrals

Rémi Soufflet[1]

  • [1] Institute of Mathematics UJ, ul. Reymonta 4, 30-059 Kraków (Pologne)

Annales de l’institut Fourier (2003)

  • Volume: 53, Issue: 3, page 767-785
  • ISSN: 0373-0956

Abstract

top
We study the integrals of real functions which are finite compositions of globally subanalytic maps and real power functions. These functions have finiteness properties very similar to those of subanalytic functions. Our aim is to investigate how such finiteness properties can remain when taking the integrals of such functions. The main result is that for almost all power maps arising in a x λ -function, its integration leads to a non-oscillating function. This can be seen as a generalization of Varchenko and Khovanskii’s finiteness theorems for abelian integrals.

How to cite

top

Soufflet, Rémi. "Finiteness property for generalized abelian integrals." Annales de l’institut Fourier 53.3 (2003): 767-785. <http://eudml.org/doc/116052>.

@article{Soufflet2003,
abstract = {We study the integrals of real functions which are finite compositions of globally subanalytic maps and real power functions. These functions have finiteness properties very similar to those of subanalytic functions. Our aim is to investigate how such finiteness properties can remain when taking the integrals of such functions. The main result is that for almost all power maps arising in a $x^\lambda $-function, its integration leads to a non-oscillating function. This can be seen as a generalization of Varchenko and Khovanskii’s finiteness theorems for abelian integrals.},
affiliation = {Institute of Mathematics UJ, ul. Reymonta 4, 30-059 Kraków (Pologne)},
author = {Soufflet, Rémi},
journal = {Annales de l’institut Fourier},
keywords = {abelian integrals; preparation theorem; o-minimal structures; diophantine conditions; Diophantine conditions},
language = {eng},
number = {3},
pages = {767-785},
publisher = {Association des Annales de l'Institut Fourier},
title = {Finiteness property for generalized abelian integrals},
url = {http://eudml.org/doc/116052},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Soufflet, Rémi
TI - Finiteness property for generalized abelian integrals
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 3
SP - 767
EP - 785
AB - We study the integrals of real functions which are finite compositions of globally subanalytic maps and real power functions. These functions have finiteness properties very similar to those of subanalytic functions. Our aim is to investigate how such finiteness properties can remain when taking the integrals of such functions. The main result is that for almost all power maps arising in a $x^\lambda $-function, its integration leads to a non-oscillating function. This can be seen as a generalization of Varchenko and Khovanskii’s finiteness theorems for abelian integrals.
LA - eng
KW - abelian integrals; preparation theorem; o-minimal structures; diophantine conditions; Diophantine conditions
UR - http://eudml.org/doc/116052
ER -

References

top
  1. V. Arnold, Chapitres supplémentaires de la théorie des équations différentielles ordinaires, Mir (1980) Zbl0455.34001MR626685
  2. J. Bochnak, M. Coste, F. Roy, Géométrie algébrique réelle, (1987), Springer-Verlag Zbl0633.14016MR949442
  3. M. Berger, B. Gostiaux, Géométrie différentielle : variétés, courbes et surfaces, (1987), Presses Universitaires de France Zbl0619.53001MR903026
  4. E. Bierstone, P. Milman, Semianalytic and subanalytic sets, Publ. Math. IHES 67 (1988), 5-42 Zbl0674.32002MR972342
  5. R. Benedetti, J.-J. Risler, Real algebraic and semialgebraic sets, (1990), Hermann Zbl0694.14006MR1070358
  6. G. Comte, Y. Yomdin, A course on metric properties of algebraic sets, (2000) 
  7. L. van den Dries, C. Miller, Geometric categories and o-minimal structure, Duke Math. J 84 (1996) Zbl0889.03025MR1404337
  8. L. van den Dries, A. Macintyre, D. Marker, The elementary theory of restricted analytic fields with exponentiation, Ann. of Maths 140 (1994), 183-205 Zbl0837.12006MR1289495
  9. H. Dulac, Sur les cycles limites, Bull. Soc. Math. Fr 51 (1923), 45-188 Zbl49.0304.01MR1504823
  10. A.M. Gabrielov, Projections of semi-analytic sets, Funct. Anal. Appl 2 (1968), 282-291 Zbl0179.08503MR245831
  11. D.Y. Grigoriev, M.F. Singer, Solving ordinary differential equations in terms of series with real exponents, Transactions Amer. Math. Soc 327 (1991), 329-351 Zbl0758.12004MR1012519
  12. A.G. Khovanskii, Real analytic varieties with the finitness property and complex abelian integrals, Funct. Anal. and Appl 18 (1984), 119-127 Zbl0584.32016MR745698
  13. A.G. Khovanskii, Fewnomials, 88 (1991), A.M.S. Zbl0728.12002MR1108621
  14. J.-M. Lion, J.-P. Rolin, Théorème de préparation pour les fonctions logarithmico-exponentielles, Ann. Inst. Fourier 47 (1997), 859-884 Zbl0873.32004MR1465789
  15. J.-M. Lion, J.-P. Rolin, Intégration des fonctions sous-analytiques et volume des sous-analytiques, Ann. Inst. Fourier 48 (1998), 755-767 Zbl0912.32007MR1644093
  16. S. Łojasiewicz, On semianalytic and subanalytic geometry, Banach Center Publication 34 (1995), 89-104 Zbl0841.32003
  17. C. Miller, Expansions of the real field with power functions, Ann. Pure Appl. Logic 68 (1994) Zbl0823.03018MR1278550
  18. R. Moussu, Le problème de la finitude du nombre de cycles limites, Séminaire Bourbaki (1985) 655 (1987), 145-146 Zbl0617.58028
  19. R. Moussu, C. Roche, Théorie de Hovanskii et problème de Dulac, Invent. Math 105 (1991), 431-441 Zbl0769.58050MR1115550
  20. A. Parusiński, Lipschitz stratification of subanalytic sets, Ann. Scient. École Normale Supérieure, 4e série 27 (1994), 661-696 Zbl0819.32007MR1307677
  21. M. Saavedra, Développement asymptotique de la fonction période, CRAS 319 (1994), 563-566 Zbl0814.34038MR1298283
  22. R. Soufflet, Propriétés oscillatoires des intégrales de -fonctions, CRAS 333 (2001), 461-464 Zbl1044.32002MR1859237
  23. R. Soufflet, Asymptotic expansions of logarithmic-exponential functions, Bull. Braz. Math. Soc., New Series 33 (2002), 125-146 Zbl1027.32013MR1934286
  24. A. Tarski, A decision method for elementary algebra and geometry, (1951), University of California Press, Berkeley and Los Angeles, Calif. Zbl0044.25102MR44472
  25. J.-C. Tougeron, Paramétrisations de petits chemins en géométrie analytique réelle, Singularities and differential equations. Proceedings of a symposium, Warsaw 33 (1996), 421-436, Banach Cent. Publ Zbl0852.32006
  26. A.N. Varchenko, Estimate of the number of zeros of an abelian integral depending an a parameter and limit cycles, Funct. Anal. and Appl 18 (1984), 98-107 Zbl0578.58035MR745696
  27. A.J. Wilkie, Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function, J. Amer. Math. Soc 9 (1996), 1051-1094 Zbl0892.03013MR1398816
  28. Y. Yomdin, Metric properties of semialgebraic sets and mappings and their applications in smooth analysis, Géométrie réelle, Systèmes différentiels et théorie de Hodge. Travaux en cours 24, Hermann, Paris Zbl0632.58009

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.