Finiteness property for generalized abelian integrals
- [1] Institute of Mathematics UJ, ul. Reymonta 4, 30-059 Kraków (Pologne)
Annales de l’institut Fourier (2003)
- Volume: 53, Issue: 3, page 767-785
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topSoufflet, Rémi. "Finiteness property for generalized abelian integrals." Annales de l’institut Fourier 53.3 (2003): 767-785. <http://eudml.org/doc/116052>.
@article{Soufflet2003,
abstract = {We study the integrals of real functions which are finite compositions of globally
subanalytic maps and real power functions. These functions have finiteness properties
very similar to those of subanalytic functions. Our aim is to investigate how such
finiteness properties can remain when taking the integrals of such functions. The main
result is that for almost all power maps arising in a $x^\lambda $-function, its
integration leads to a non-oscillating function. This can be seen as a generalization of
Varchenko and Khovanskii’s finiteness theorems for abelian integrals.},
affiliation = {Institute of Mathematics UJ, ul. Reymonta 4, 30-059 Kraków (Pologne)},
author = {Soufflet, Rémi},
journal = {Annales de l’institut Fourier},
keywords = {abelian integrals; preparation theorem; o-minimal structures; diophantine conditions; Diophantine conditions},
language = {eng},
number = {3},
pages = {767-785},
publisher = {Association des Annales de l'Institut Fourier},
title = {Finiteness property for generalized abelian integrals},
url = {http://eudml.org/doc/116052},
volume = {53},
year = {2003},
}
TY - JOUR
AU - Soufflet, Rémi
TI - Finiteness property for generalized abelian integrals
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 3
SP - 767
EP - 785
AB - We study the integrals of real functions which are finite compositions of globally
subanalytic maps and real power functions. These functions have finiteness properties
very similar to those of subanalytic functions. Our aim is to investigate how such
finiteness properties can remain when taking the integrals of such functions. The main
result is that for almost all power maps arising in a $x^\lambda $-function, its
integration leads to a non-oscillating function. This can be seen as a generalization of
Varchenko and Khovanskii’s finiteness theorems for abelian integrals.
LA - eng
KW - abelian integrals; preparation theorem; o-minimal structures; diophantine conditions; Diophantine conditions
UR - http://eudml.org/doc/116052
ER -
References
top- V. Arnold, Chapitres supplémentaires de la théorie des équations différentielles ordinaires, Mir (1980) Zbl0455.34001MR626685
- J. Bochnak, M. Coste, F. Roy, Géométrie algébrique réelle, (1987), Springer-Verlag Zbl0633.14016MR949442
- M. Berger, B. Gostiaux, Géométrie différentielle : variétés, courbes et surfaces, (1987), Presses Universitaires de France Zbl0619.53001MR903026
- E. Bierstone, P. Milman, Semianalytic and subanalytic sets, Publ. Math. IHES 67 (1988), 5-42 Zbl0674.32002MR972342
- R. Benedetti, J.-J. Risler, Real algebraic and semialgebraic sets, (1990), Hermann Zbl0694.14006MR1070358
- G. Comte, Y. Yomdin, A course on metric properties of algebraic sets, (2000)
- L. van den Dries, C. Miller, Geometric categories and o-minimal structure, Duke Math. J 84 (1996) Zbl0889.03025MR1404337
- L. van den Dries, A. Macintyre, D. Marker, The elementary theory of restricted analytic fields with exponentiation, Ann. of Maths 140 (1994), 183-205 Zbl0837.12006MR1289495
- H. Dulac, Sur les cycles limites, Bull. Soc. Math. Fr 51 (1923), 45-188 Zbl49.0304.01MR1504823
- A.M. Gabrielov, Projections of semi-analytic sets, Funct. Anal. Appl 2 (1968), 282-291 Zbl0179.08503MR245831
- D.Y. Grigoriev, M.F. Singer, Solving ordinary differential equations in terms of series with real exponents, Transactions Amer. Math. Soc 327 (1991), 329-351 Zbl0758.12004MR1012519
- A.G. Khovanskii, Real analytic varieties with the finitness property and complex abelian integrals, Funct. Anal. and Appl 18 (1984), 119-127 Zbl0584.32016MR745698
- A.G. Khovanskii, Fewnomials, 88 (1991), A.M.S. Zbl0728.12002MR1108621
- J.-M. Lion, J.-P. Rolin, Théorème de préparation pour les fonctions logarithmico-exponentielles, Ann. Inst. Fourier 47 (1997), 859-884 Zbl0873.32004MR1465789
- J.-M. Lion, J.-P. Rolin, Intégration des fonctions sous-analytiques et volume des sous-analytiques, Ann. Inst. Fourier 48 (1998), 755-767 Zbl0912.32007MR1644093
- S. Łojasiewicz, On semianalytic and subanalytic geometry, Banach Center Publication 34 (1995), 89-104 Zbl0841.32003
- C. Miller, Expansions of the real field with power functions, Ann. Pure Appl. Logic 68 (1994) Zbl0823.03018MR1278550
- R. Moussu, Le problème de la finitude du nombre de cycles limites, Séminaire Bourbaki (1985) 655 (1987), 145-146 Zbl0617.58028
- R. Moussu, C. Roche, Théorie de Hovanskii et problème de Dulac, Invent. Math 105 (1991), 431-441 Zbl0769.58050MR1115550
- A. Parusiński, Lipschitz stratification of subanalytic sets, Ann. Scient. École Normale Supérieure, 4e série 27 (1994), 661-696 Zbl0819.32007MR1307677
- M. Saavedra, Développement asymptotique de la fonction période, CRAS 319 (1994), 563-566 Zbl0814.34038MR1298283
- R. Soufflet, Propriétés oscillatoires des intégrales de -fonctions, CRAS 333 (2001), 461-464 Zbl1044.32002MR1859237
- R. Soufflet, Asymptotic expansions of logarithmic-exponential functions, Bull. Braz. Math. Soc., New Series 33 (2002), 125-146 Zbl1027.32013MR1934286
- A. Tarski, A decision method for elementary algebra and geometry, (1951), University of California Press, Berkeley and Los Angeles, Calif. Zbl0044.25102MR44472
- J.-C. Tougeron, Paramétrisations de petits chemins en géométrie analytique réelle, Singularities and differential equations. Proceedings of a symposium, Warsaw 33 (1996), 421-436, Banach Cent. Publ Zbl0852.32006
- A.N. Varchenko, Estimate of the number of zeros of an abelian integral depending an a parameter and limit cycles, Funct. Anal. and Appl 18 (1984), 98-107 Zbl0578.58035MR745696
- A.J. Wilkie, Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function, J. Amer. Math. Soc 9 (1996), 1051-1094 Zbl0892.03013MR1398816
- Y. Yomdin, Metric properties of semialgebraic sets and mappings and their applications in smooth analysis, Géométrie réelle, Systèmes différentiels et théorie de Hodge. Travaux en cours 24, Hermann, Paris Zbl0632.58009
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.