Plane curve singularities and carousels

Lê Dung Tráng[1]

  • [1] Université de Provence, CMI, 39 rue Joliot-Curie, 13453 Marseille Cedex 3 (France)

Annales de l’institut Fourier (2003)

  • Volume: 53, Issue: 4, page 1117-1139
  • ISSN: 0373-0956

Abstract

top
In this paper we give a direct and explicit description of the local topological embedding of a plane curve singularity using the Puiseux expansions of its branches in a given set of coordinates.

How to cite

top

Tráng, Lê Dung. "Plane curve singularities and carousels." Annales de l’institut Fourier 53.4 (2003): 1117-1139. <http://eudml.org/doc/116063>.

@article{Tráng2003,
abstract = {In this paper we give a direct and explicit description of the local topological embedding of a plane curve singularity using the Puiseux expansions of its branches in a given set of coordinates.},
affiliation = {Université de Provence, CMI, 39 rue Joliot-Curie, 13453 Marseille Cedex 3 (France)},
author = {Tráng, Lê Dung},
journal = {Annales de l’institut Fourier},
keywords = {plane curve; singularities; carousels; Puiseux expansions; characteristic exponents},
language = {eng},
number = {4},
pages = {1117-1139},
publisher = {Association des Annales de l'Institut Fourier},
title = {Plane curve singularities and carousels},
url = {http://eudml.org/doc/116063},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Tráng, Lê Dung
TI - Plane curve singularities and carousels
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 4
SP - 1117
EP - 1139
AB - In this paper we give a direct and explicit description of the local topological embedding of a plane curve singularity using the Puiseux expansions of its branches in a given set of coordinates.
LA - eng
KW - plane curve; singularities; carousels; Puiseux expansions; characteristic exponents
UR - http://eudml.org/doc/116063
ER -

References

top
  1. K. Brauner, Zur Geometrie der Funktionen zweier komplexen Verändlichen III, IV, Abh. Math. Sem. Hamburg 6 (1928), 8-54 
  2. D. Eisenbud, W. Neumann, Three dimensional link theory and invariants of plane curve singularities, 110 (1985), Princeton University Press, Princeton Zbl0628.57002MR817982
  3. W. Jaco, Lectures on three-manifold topology, 43 (1977), AMS Zbl0433.57001
  4. W. Jaco, P. Shalen, A new decomposition theorem for irreducible sufficiently large 3-manifolds, 32 (1977), 209-222, A.M.S Zbl0409.57011
  5. W. Jaco, P. Shalen, Seifert fiber spaces in 3-manifolds, Memoirs A.M.S 220 (1978) Zbl0415.57005MR537728
  6. Lê D.T., Sur les nœuds algébriques, Comp. Math 25 (1972), 281-321 Zbl0245.14003
  7. Lê D.T., Introduction à la théorie des singularités. Travaux en cours, t. 1-2 (1988), 36-37, Hermann Ed, Paris Zbl0663.32001
  8. Lê D.T., La monodromie n'a pas de point fixe, J. Fac. Sc. Univ. Tokyo 22 (1975), 409-427 Zbl0355.32012MR401756
  9. Lê D.T., The geometry of the monodromy theorem, C. P. Ramanujam, a tribute 8 (1978), 157-173, Springer, Berlin-New York Zbl0434.32010
  10. Lê D.T., J. Seade, A. Verjovsky, Quadrics, Orthogonal Actions and Involutions in Complex Projective Spaces Zbl1069.32011
  11. Lê D.T., F. Michel, C. Weber, Sur le comportement des polaires associées aux germes de courbes planes, Ann. Ec. Norm. Sup., 4ème Série 24 (1991), 141-169 Zbl0748.32018MR1097689
  12. F. Michel, C. Weber, Topologie des germes de courbes planes, (1985) 
  13. F. Pham, Singularités des courbes planes, (1972) Zbl0232.14011MR340259
  14. J. Reeve, A summary of results in the topological classification of plane algebroid singularities, Rendiconti Sem. Mat. Torino 14 (1954--55), 159-187 Zbl0067.12904MR96663
  15. F. Waldhausen, Eine Klasse von 3-dimensionaler Mannigfaltigkeiten, Inv. Math 3 (1967), 87-117 Zbl0168.44503MR235576
  16. O. Zariski, Studies in Equisingularity I, Amer. J. Math 87 (1965), 507-536 Zbl0132.41601MR177985

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.