A combinatorial interpretation of Serre's conjecture on modular Galois representations

Adriaan Herremans[1]

  • [1] University of Utrecht, Department of Mathematics, PO Box 80010, 3508 TA Utrecht (The Netherlands)

Annales de l’institut Fourier (2003)

  • Volume: 53, Issue: 5, page 1287-1321
  • ISSN: 0373-0956

Abstract

top
We state a conjecture concerning modular absolutely irreducible odd 2-dimensional representations of the absolute Galois group over finite fields which is purely combinatorial (without using modular forms) and proof that it is equivalent to Serre’s strong conjecture. The main idea is to replace modular forms with coefficients in a finite field of characteristic p , by their counterparts in the theory of modular symbols.

How to cite

top

Herremans, Adriaan. "A combinatorial interpretation of Serre's conjecture on modular Galois representations." Annales de l’institut Fourier 53.5 (2003): 1287-1321. <http://eudml.org/doc/116073>.

@article{Herremans2003,
abstract = {We state a conjecture concerning modular absolutely irreducible odd 2-dimensional representations of the absolute Galois group over finite fields which is purely combinatorial (without using modular forms) and proof that it is equivalent to Serre’s strong conjecture. The main idea is to replace modular forms with coefficients in a finite field of characteristic $p$, by their counterparts in the theory of modular symbols.},
affiliation = {University of Utrecht, Department of Mathematics, PO Box 80010, 3508 TA Utrecht (The Netherlands)},
author = {Herremans, Adriaan},
journal = {Annales de l’institut Fourier},
keywords = {modular forms; modular symbols; 2-dimensional irreducible Galois representations; Shimura cohomology; Eichler-Shimura-isomorphism; Serre conjecture; modular form; Hecke operator; modular symbol},
language = {eng},
number = {5},
pages = {1287-1321},
publisher = {Association des Annales de l'Institut Fourier},
title = {A combinatorial interpretation of Serre's conjecture on modular Galois representations},
url = {http://eudml.org/doc/116073},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Herremans, Adriaan
TI - A combinatorial interpretation of Serre's conjecture on modular Galois representations
JO - Annales de l’institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 5
SP - 1287
EP - 1321
AB - We state a conjecture concerning modular absolutely irreducible odd 2-dimensional representations of the absolute Galois group over finite fields which is purely combinatorial (without using modular forms) and proof that it is equivalent to Serre’s strong conjecture. The main idea is to replace modular forms with coefficients in a finite field of characteristic $p$, by their counterparts in the theory of modular symbols.
LA - eng
KW - modular forms; modular symbols; 2-dimensional irreducible Galois representations; Shimura cohomology; Eichler-Shimura-isomorphism; Serre conjecture; modular form; Hecke operator; modular symbol
UR - http://eudml.org/doc/116073
ER -

References

top
  1. H. Cohen, J. Oesterlé, Dimensions des espaces de formes modulaires, 627 (1977), 69-78, Springer-Verlag Zbl0371.10020
  2. H. Darmon, Serre's conjectures, Seminar on Fermat's Last Theorem (Toronto, ON, 1993-1994) 17, 135-153 Zbl0848.11019
  3. P. Deligne, J.-P. Serre, Formes modulaires de poids, Ann. Sci. E.N.S 7 (1974), 507-530 Zbl0321.10026MR379379
  4. F. Diamond, J. Im, Modular forms and modular curves, Seminar on Fermat's Last Theorem (1995), 39-134 Zbl0853.11032
  5. B. Edixhoven, The weight in Serre's conjectures on modular forms, Inventiones Mathematicae 109 (1992), 563-594 Zbl0777.11013MR1176206
  6. B. Edixhoven, Serre's conjecture, Modular Forms and Fermat's Last Theorem (1997), 209-242, Springer-Verlag Zbl0918.11023
  7. A. Herremans, A combinatorial interpretation of Serre's conjecture on modular Galois representations, (2001) Zbl1056.11032
  8. A. Knapp, Elliptic Curves, (1992), Oxford University Press Zbl0804.14013MR1193029
  9. J. Manin, Parabolic Points and Zeta-Function of Modular Curves, Math. USSR Izvestija 6 (1972), 19-64 Zbl0248.14010MR314846
  10. H. Matsumura, Commutative algebra, (1970), W. A. Benjamin, New York Zbl0211.06501MR266911
  11. F. Martin, Périodes de formes modulaires de poids 1, (2001) 
  12. L. Merel, Universal Fourier expansions of modular forms, 1585 (1994), 59-94, Springer-Verlag Zbl0844.11033
  13. T. Miyake, Modular Forms, (1989), Springer-Verlag Zbl0701.11014MR1021004
  14. J.-P. Serre, Sur les représentations modulaires de degré 2 de G a l ( ¯ Q / Q ) , Duke Mathematical Journal 54 (1987), 179-230 Zbl0641.10026MR885783
  15. J.-P. Serre, Oeuvres, collected papers vol. III (1986), 1972-1984, Springer-Verlag Zbl0849.01049
  16. G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, (1971), Iwana Shoten Publishers and Princeton University Press Zbl0221.10029MR1291394
  17. V. Shokurov, Shimura integrals of cusp forms, Math. USSR Isvestija 16 (1981), 603-646 Zbl0466.14014

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.