On the approximate roots of polynomials

Janusz Gwoździewicz; Arkadiusz Płoski

Annales Polonici Mathematici (1995)

  • Volume: 60, Issue: 3, page 199-210
  • ISSN: 0066-2216

Abstract

top
We give a simplified approach to the Abhyankar-Moh theory of approximate roots. Our considerations are based on properties of the intersection multiplicity of local curves.

How to cite

top

Janusz Gwoździewicz, and Arkadiusz Płoski. "On the approximate roots of polynomials." Annales Polonici Mathematici 60.3 (1995): 199-210. <http://eudml.org/doc/262335>.

@article{JanuszGwoździewicz1995,
abstract = {We give a simplified approach to the Abhyankar-Moh theory of approximate roots. Our considerations are based on properties of the intersection multiplicity of local curves.},
author = {Janusz Gwoździewicz, Arkadiusz Płoski},
journal = {Annales Polonici Mathematici},
keywords = {approximate root; semigroup of an analytic curve; irreducibility criterion; approximable roots of polynomials; field of meromorphic series},
language = {eng},
number = {3},
pages = {199-210},
title = {On the approximate roots of polynomials},
url = {http://eudml.org/doc/262335},
volume = {60},
year = {1995},
}

TY - JOUR
AU - Janusz Gwoździewicz
AU - Arkadiusz Płoski
TI - On the approximate roots of polynomials
JO - Annales Polonici Mathematici
PY - 1995
VL - 60
IS - 3
SP - 199
EP - 210
AB - We give a simplified approach to the Abhyankar-Moh theory of approximate roots. Our considerations are based on properties of the intersection multiplicity of local curves.
LA - eng
KW - approximate root; semigroup of an analytic curve; irreducibility criterion; approximable roots of polynomials; field of meromorphic series
UR - http://eudml.org/doc/262335
ER -

References

top
  1. [1] S. S. Abhyankar, Expansion Techniques in Algebraic Geometry, Tata Inst. Fund. Research, Bombay, 1977. Zbl0818.14001
  2. [2] S. S. Abhyankar and T. Moh, Newton-Puiseux expansion and generalized Tschirnhausen transformation, J. Reine Angew. Math. 260 (1973), 47-83; 261 (1973), 29-54. Zbl0272.12102
  3. [3] S. S. Abhyankar and T. Moh, Embeddings of the line in the plane, ibid. 276 (1975), 148-166. Zbl0332.14004
  4. [4] R. Ephraim, Special polars and curves with one place at infinity, in: Proc. Sympos. Pure Math. 40, Part I, Amer. Math. Soc., 1985, 353-359. 
  5. [5] J. Gwoździewicz and A. Płoski, On the Merle formula for polar invariants, Bull. Soc. Sci. Lettres Łódź 41 (7) (1991), 61-67. Zbl0893.32006
  6. [6] M. Merle, Invariants polaires des courbes planes, Invent. Math. 41 (1977), 103-111. Zbl0371.14003
  7. [7] T. T. Moh, On the concept of approximate roots for algebra, J. Algebra 65 (1980), 347-360. Zbl0437.13004
  8. [8] T. T. Moh, On two fundamental theorems for the concept of approximate roots, J. Math. Soc. Japan 34 (1982), 637-652. Zbl0528.12015
  9. [9] A. Płoski, Bézout's theorem for affine curves with one branch at infinity, Univ. Iagell. Acta Math. 28 (1991), 77-80. Zbl0759.14023
  10. [10] O. Zariski, Le problème des modules pour les branches planes, Centre de Mathématiques de l'Ecole Polytechnique, 1973. Zbl0317.14004

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.