# On the approximate roots of polynomials

Janusz Gwoździewicz; Arkadiusz Płoski

Annales Polonici Mathematici (1995)

- Volume: 60, Issue: 3, page 199-210
- ISSN: 0066-2216

## Access Full Article

top## Abstract

top## How to cite

topJanusz Gwoździewicz, and Arkadiusz Płoski. "On the approximate roots of polynomials." Annales Polonici Mathematici 60.3 (1995): 199-210. <http://eudml.org/doc/262335>.

@article{JanuszGwoździewicz1995,

abstract = {We give a simplified approach to the Abhyankar-Moh theory of approximate roots. Our considerations are based on properties of the intersection multiplicity of local curves.},

author = {Janusz Gwoździewicz, Arkadiusz Płoski},

journal = {Annales Polonici Mathematici},

keywords = {approximate root; semigroup of an analytic curve; irreducibility criterion; approximable roots of polynomials; field of meromorphic series},

language = {eng},

number = {3},

pages = {199-210},

title = {On the approximate roots of polynomials},

url = {http://eudml.org/doc/262335},

volume = {60},

year = {1995},

}

TY - JOUR

AU - Janusz Gwoździewicz

AU - Arkadiusz Płoski

TI - On the approximate roots of polynomials

JO - Annales Polonici Mathematici

PY - 1995

VL - 60

IS - 3

SP - 199

EP - 210

AB - We give a simplified approach to the Abhyankar-Moh theory of approximate roots. Our considerations are based on properties of the intersection multiplicity of local curves.

LA - eng

KW - approximate root; semigroup of an analytic curve; irreducibility criterion; approximable roots of polynomials; field of meromorphic series

UR - http://eudml.org/doc/262335

ER -

## References

top- [1] S. S. Abhyankar, Expansion Techniques in Algebraic Geometry, Tata Inst. Fund. Research, Bombay, 1977. Zbl0818.14001
- [2] S. S. Abhyankar and T. Moh, Newton-Puiseux expansion and generalized Tschirnhausen transformation, J. Reine Angew. Math. 260 (1973), 47-83; 261 (1973), 29-54. Zbl0272.12102
- [3] S. S. Abhyankar and T. Moh, Embeddings of the line in the plane, ibid. 276 (1975), 148-166. Zbl0332.14004
- [4] R. Ephraim, Special polars and curves with one place at infinity, in: Proc. Sympos. Pure Math. 40, Part I, Amer. Math. Soc., 1985, 353-359.
- [5] J. Gwoździewicz and A. Płoski, On the Merle formula for polar invariants, Bull. Soc. Sci. Lettres Łódź 41 (7) (1991), 61-67. Zbl0893.32006
- [6] M. Merle, Invariants polaires des courbes planes, Invent. Math. 41 (1977), 103-111. Zbl0371.14003
- [7] T. T. Moh, On the concept of approximate roots for algebra, J. Algebra 65 (1980), 347-360. Zbl0437.13004
- [8] T. T. Moh, On two fundamental theorems for the concept of approximate roots, J. Math. Soc. Japan 34 (1982), 637-652. Zbl0528.12015
- [9] A. Płoski, Bézout's theorem for affine curves with one branch at infinity, Univ. Iagell. Acta Math. 28 (1991), 77-80. Zbl0759.14023
- [10] O. Zariski, Le problème des modules pour les branches planes, Centre de Mathématiques de l'Ecole Polytechnique, 1973. Zbl0317.14004

## Citations in EuDML Documents

top- Hussein Mourtada, Jet schemes of complex plane branches and equisingularity
- Vincent Cossart, Guillermo Moreno-Socías, Racines approchées, suites génératrices, suffisance des jets
- Evelia R. García Barroso, Janusz Gwoździewicz, Characterization of jacobian Newton polygons of plane branches and new criteria of irreducibility
- Pedro D. González Pérez, Toric embedded resolutions of quasi-ordinary hypersurface singularities

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.