Monodromie des systèmes différentiels linéaires à pôles simples sur la sphère de Riemann

Arnaud Beauville

Séminaire Bourbaki (1992-1993)

  • Volume: 35, page 103-119
  • ISSN: 0303-1179

How to cite


Beauville, Arnaud. "Monodromie des systèmes différentiels linéaires à pôles simples sur la sphère de Riemann." Séminaire Bourbaki 35 (1992-1993): 103-119. <>.

author = {Beauville, Arnaud},
journal = {Séminaire Bourbaki},
keywords = {linear differential equations in the complex domain},
language = {fre},
pages = {103-119},
publisher = {Société Mathématique de France},
title = {Monodromie des systèmes différentiels linéaires à pôles simples sur la sphère de Riemann},
url = {},
volume = {35},
year = {1992-1993},

AU - Beauville, Arnaud
TI - Monodromie des systèmes différentiels linéaires à pôles simples sur la sphère de Riemann
JO - Séminaire Bourbaki
PY - 1992-1993
PB - Société Mathématique de France
VL - 35
SP - 103
EP - 119
LA - fre
KW - linear differential equations in the complex domain
UR -
ER -


  1. [B1] A. Bolibruch : The Riemann-Hilbert problem on the complex projective line (en russe). Mat. Zametki46, 118-120 (1989). Zbl0687.30004MR1032917
  2. [B2] A. Bolibruch : The Riemann-Hilbert problem. Russian Math. Surveys45, 1-47 (1990). 
  3. [B3] A. Bolibruch : Fuchsian systems with reducible monodromy and the Riemann-Hilbert problem. Lecture Notes in Math.1520, 139-155; Springer-Verlag, Berlin-Heidelberg-New York (1992). Zbl0796.30038MR1178278
  4. [B4] A. Bolibruch : Construction of a Fuchsian equation from a monodromy representation. Math. Notes48, 1090-1099 (1990). Zbl0727.34005MR1092150
  5. [B5] A. Bolibruch : On sufficient conditions for the positive solvability of the Riemann-Hilbert problem (sic).Math. Notes51, 110-117 (1992). Zbl0790.34001MR1165460
  6. [Bi] G. Birkhoff : The generalized Hilbert problem for linear differential equations and the allied problems for linear difference and q-difference equations. Proc. Amer. Acad.49, 521-568 (1913). JFM44.0391.03
  7. [D] P. Deligne : Equations différentielles à points singuliers réguliers. Lecture Notes in Math.163, Springer-Verlag, Berlin-Heidelberg-New York (1970). Zbl0244.14004MR417174
  8. [Dk] W. Dekkers : The matrix of a connection having regular singularities on a vector bundle of rank 2 on P1(C). Lecture Notes in Math.712, 33-43; Springer-Verlag, Berlin-Heidelberg-New York (1979). Zbl0499.14002MR548141
  9. [ENS] Mathématique et Physique(Séminaire de l'ENS 79-82). Progress in Math.37, Birkhäuser, Boston (1983). 
  10. [G] F. Gantmacher : The theory of matrices, vol. II. Chelsea, New York (1959). Zbl0927.15001
  11. [I] E. Ince : Ordinary differential equations. Dover, New York (1956). Zbl0063.02971MR10757
  12. [JMS] M. Sato, T. Miwa, M. Jimbo : Holonomic quantum fields II: the Riemann-Hilbert problem.Publ. RIMS Univ. Kyoto15, 201-278 (1979). Zbl0433.35058MR533348
  13. [K] V. Kostov : Fuchsian linear systems on CP1 and Riemann-Hilbert's problem. Prépublication Université de Nice (1991). 
  14. [L-D] I. Lappo-Danilevskiĭ : Mémoires sur la théorie des systèmes des équations différentielles linéaires.Chelsea, New York (1953). Zbl0051.32301
  15. [L] A. Levelt : Hypergeometric functions. Indag. Math.23, 361-403 (1961). Zbl0124.03602MR137853
  16. [P] J. Plemelj : Riemannsche Funktionenscharen mit gegebener Monodromiegruppe. Monatshefte für Math. und Physik19, 205-246 (1908). Zbl39.0461.01JFM39.0461.01
  17. [Rö] H. Rohrl : Das Riemann-Hilbertsche Problem der Theorie der linearen Differentialgleichungen. Math. Annalen133, 1-25 (1957). Zbl0088.06001MR86958
  18. [S] L. Schlesinger : Vorlesungen über lineare Differentialgleichungen.Teubner, Leipzig-Berlin (1908). Zbl39.0369.01JFM39.0369.01

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.