The Brauer group of torsors and its arithmetic applications

David Harari[1]; Alexei N. Skorobogatov[2]

  • [1] École Normale Supérieure, DMA, 45 rue d'Ulm, 75230 Paris Cedex 05 (France)
  • [2] Imperial College, Department of Mathematics, 180 Queen's Gate, London SW7 2BZ (Royaume-Uni)

Annales de l'Institut Fourier (2003)

  • Volume: 53, Issue: 7, page 1987-2019
  • ISSN: 0373-0956

Abstract

top
Let X be an algebraic variety defined over a field k of characteristic 0 , and let Y be an X -torsor under a torus. We compute the Brauer group of Y . In the case of a number field k we deduce results concerning the arithmetic of X .

How to cite

top

Harari, David, and Skorobogatov, Alexei N.. "The Brauer group of torsors and its arithmetic applications." Annales de l'Institut Fourier 53.7 (2003): 1987-2019. <http://eudml.org/doc/116091>.

@article{Harari2003,
abstract = {Let $X$ be an algebraic variety defined over a field $k$ of characteristic $0$, and let $Y$ be an $X$-torsor under a torus. We compute the Brauer group of $Y$. In the case of a number field $k$ we deduce results concerning the arithmetic of $X$.},
affiliation = {École Normale Supérieure, DMA, 45 rue d'Ulm, 75230 Paris Cedex 05 (France); Imperial College, Department of Mathematics, 180 Queen's Gate, London SW7 2BZ (Royaume-Uni)},
author = {Harari, David, Skorobogatov, Alexei N.},
journal = {Annales de l'Institut Fourier},
keywords = {Brauer group; Hasse principle; universal torsor},
language = {eng},
number = {7},
pages = {1987-2019},
publisher = {Association des Annales de l'Institut Fourier},
title = {The Brauer group of torsors and its arithmetic applications},
url = {http://eudml.org/doc/116091},
volume = {53},
year = {2003},
}

TY - JOUR
AU - Harari, David
AU - Skorobogatov, Alexei N.
TI - The Brauer group of torsors and its arithmetic applications
JO - Annales de l'Institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 7
SP - 1987
EP - 2019
AB - Let $X$ be an algebraic variety defined over a field $k$ of characteristic $0$, and let $Y$ be an $X$-torsor under a torus. We compute the Brauer group of $Y$. In the case of a number field $k$ we deduce results concerning the arithmetic of $X$.
LA - eng
KW - Brauer group; Hasse principle; universal torsor
UR - http://eudml.org/doc/116091
ER -

References

top
  1. Algebraic number theory, (1967), Academic Press, London and New-York 
  2. J.-L. Colliot-Thélène, Surfaces rationnelles fibrées en coniques de degré 4, Séminaire de Théorie des Nombres, Paris 1988-1989 91 (1990), 43-55, Birkhäuser, Boston Zbl0731.14033
  3. J.-L. Colliot-Thélène, J.-J. Sansuc, La R -équivalence sur les tores., Ann. Sci. École Norm. Sup. 10 (1977), 175-230 Zbl0356.14007MR450280
  4. J.-L. Colliot-Thélène, J.-J. Sansuc, La descente sur les variétés rationnelles, II, Duke Math. J. 54 (1987), 375-492 Zbl0659.14028MR899402
  5. J.-L. Colliot-Thélène, J.-J. Sansuc, Principal homogeneous spaces under flasque tori; applications, J. Algebra 106 (1987), 148-205 Zbl0597.14014MR878473
  6. J.-L. Colliot-Thélène, J.-J. Sansuc, Sir Peter Swinnerton-Dyer, Intersections of two quadrics and Châtelet surfaces. I., J. reine angew. Math. 373 (1987), 37-107 Zbl0622.14029MR870307
  7. J.-L. Colliot-Thélène, A. N. Skorobogatov, Descent on fibrations over P k 1 revisited, Math. Proc. Camb. Phil. Soc 128 (2000), 383-393 Zbl1024.14003MR1744112
  8. T. Graber, J. Harris, J. Starr, Families of rationally connected varieties, J. Amer. Math. Soc 16 (2003), 57-67 Zbl1092.14063MR1937199
  9. A. Grothendieck, Éléments de géométrie algébrique IV. Étude locale des schémas et des morphismes de schémas (EGA), Publ. Math. IHES (1964-1967) Zbl0135.39701
  10. A. Grothendieck, Le groupe de Brauer. III. Exemples et compléments., Dix exposés sur la cohomologie des schémas (1968), Masson-North-Holland, Amsterdam Zbl0198.25901
  11. D. Harari, Méthode des fibrations et obstruction de Manin, Duke Math. J 75 (1994), 221-260 Zbl0847.14001MR1284820
  12. D. Harari, Flèches de spécialisation en cohomologie étale et applications arithmétiques, Bull. Soc. Math. France 125 (1997), 143-166 Zbl0906.14014MR1478028
  13. B. Kunyavskiǐ, A.N. Skorobogatov, M.A. Tsfasman, Del Pezzo surfaces of degree four, Mém. Soc. Math. France 37 (1989) Zbl0705.14039MR1016354
  14. J.-S. Milne, Étale Cohomology, 33 (1980), Princeton Univ. Press, Princeton Zbl0433.14012MR559531
  15. P. Salberger, A.N. Skorobogatov, Weak approximation for surfaces defined by two quadratic forms, Duke Math. J 63 (1991), 517-536 Zbl0770.14019MR1115119
  16. A.N. Skorobogatov, Arithmetic on certain quadric bundles of relative dimension. I., J. reine angew. Math 407 (1990), 57-74 Zbl0692.14001MR1048528
  17. A.N. Skorobogatov, Descent on fibrations over the projective line, Amer. J. Math 118 (1996), 905-923 Zbl0880.14008MR1408492
  18. A.N. Skorobogatov, Torsors and rational points, (2001), Cambridge Univ. Press, Cambridge Zbl0972.14015MR1845760
  19. Sir Peter Swinnerton, - Dyer, Rational points on some pencils of conics with 6 singular fibres, Ann. Fac. Sci. Toulouse 8 (1999), 331-341 Zbl0976.14014MR1751446
  20. V. E. Voskresenskiǐ, Algebraic groups and their birational invariants, 179 (1998), Amer. Math. Soc., Providence Zbl0974.14034MR1634406
  21. J.-L. Colliot-Thélène, J.-J. Sansuc, Sir Peter Swinnerton-Dyer, Intersections of two quadrics and Châtelet surfaces. II., J. Reine Angew. Math. 374 (1987), 72-168 Zbl0622.14030MR876222

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.