The Brauer group of torsors and its arithmetic applications
David Harari[1]; Alexei N. Skorobogatov[2]
- [1] École Normale Supérieure, DMA, 45 rue d'Ulm, 75230 Paris Cedex 05 (France)
- [2] Imperial College, Department of Mathematics, 180 Queen's Gate, London SW7 2BZ (Royaume-Uni)
Annales de l'Institut Fourier (2003)
- Volume: 53, Issue: 7, page 1987-2019
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topHarari, David, and Skorobogatov, Alexei N.. "The Brauer group of torsors and its arithmetic applications." Annales de l'Institut Fourier 53.7 (2003): 1987-2019. <http://eudml.org/doc/116091>.
@article{Harari2003,
abstract = {Let $X$ be an algebraic variety defined over a field $k$ of characteristic $0$, and let
$Y$ be an $X$-torsor under a torus. We compute the Brauer group of $Y$. In the case of a
number field $k$ we deduce results concerning the arithmetic of $X$.},
affiliation = {École Normale Supérieure, DMA, 45 rue d'Ulm, 75230 Paris Cedex 05 (France); Imperial College, Department of Mathematics, 180 Queen's Gate, London SW7 2BZ (Royaume-Uni)},
author = {Harari, David, Skorobogatov, Alexei N.},
journal = {Annales de l'Institut Fourier},
keywords = {Brauer group; Hasse principle; universal torsor},
language = {eng},
number = {7},
pages = {1987-2019},
publisher = {Association des Annales de l'Institut Fourier},
title = {The Brauer group of torsors and its arithmetic applications},
url = {http://eudml.org/doc/116091},
volume = {53},
year = {2003},
}
TY - JOUR
AU - Harari, David
AU - Skorobogatov, Alexei N.
TI - The Brauer group of torsors and its arithmetic applications
JO - Annales de l'Institut Fourier
PY - 2003
PB - Association des Annales de l'Institut Fourier
VL - 53
IS - 7
SP - 1987
EP - 2019
AB - Let $X$ be an algebraic variety defined over a field $k$ of characteristic $0$, and let
$Y$ be an $X$-torsor under a torus. We compute the Brauer group of $Y$. In the case of a
number field $k$ we deduce results concerning the arithmetic of $X$.
LA - eng
KW - Brauer group; Hasse principle; universal torsor
UR - http://eudml.org/doc/116091
ER -
References
top- Algebraic number theory, (1967), Academic Press, London and New-York
- J.-L. Colliot-Thélène, Surfaces rationnelles fibrées en coniques de degré 4, Séminaire de Théorie des Nombres, Paris 1988-1989 91 (1990), 43-55, Birkhäuser, Boston Zbl0731.14033
- J.-L. Colliot-Thélène, J.-J. Sansuc, La -équivalence sur les tores., Ann. Sci. École Norm. Sup. 10 (1977), 175-230 Zbl0356.14007MR450280
- J.-L. Colliot-Thélène, J.-J. Sansuc, La descente sur les variétés rationnelles, II, Duke Math. J. 54 (1987), 375-492 Zbl0659.14028MR899402
- J.-L. Colliot-Thélène, J.-J. Sansuc, Principal homogeneous spaces under flasque tori; applications, J. Algebra 106 (1987), 148-205 Zbl0597.14014MR878473
- J.-L. Colliot-Thélène, J.-J. Sansuc, Sir Peter Swinnerton-Dyer, Intersections of two quadrics and Châtelet surfaces. I., J. reine angew. Math. 373 (1987), 37-107 Zbl0622.14029MR870307
- J.-L. Colliot-Thélène, A. N. Skorobogatov, Descent on fibrations over revisited, Math. Proc. Camb. Phil. Soc 128 (2000), 383-393 Zbl1024.14003MR1744112
- T. Graber, J. Harris, J. Starr, Families of rationally connected varieties, J. Amer. Math. Soc 16 (2003), 57-67 Zbl1092.14063MR1937199
- A. Grothendieck, Éléments de géométrie algébrique IV. Étude locale des schémas et des morphismes de schémas (EGA), Publ. Math. IHES (1964-1967) Zbl0135.39701
- A. Grothendieck, Le groupe de Brauer. III. Exemples et compléments., Dix exposés sur la cohomologie des schémas (1968), Masson-North-Holland, Amsterdam Zbl0198.25901
- D. Harari, Méthode des fibrations et obstruction de Manin, Duke Math. J 75 (1994), 221-260 Zbl0847.14001MR1284820
- D. Harari, Flèches de spécialisation en cohomologie étale et applications arithmétiques, Bull. Soc. Math. France 125 (1997), 143-166 Zbl0906.14014MR1478028
- B. Kunyavskiǐ, A.N. Skorobogatov, M.A. Tsfasman, Del Pezzo surfaces of degree four, Mém. Soc. Math. France 37 (1989) Zbl0705.14039MR1016354
- J.-S. Milne, Étale Cohomology, 33 (1980), Princeton Univ. Press, Princeton Zbl0433.14012MR559531
- P. Salberger, A.N. Skorobogatov, Weak approximation for surfaces defined by two quadratic forms, Duke Math. J 63 (1991), 517-536 Zbl0770.14019MR1115119
- A.N. Skorobogatov, Arithmetic on certain quadric bundles of relative dimension. I., J. reine angew. Math 407 (1990), 57-74 Zbl0692.14001MR1048528
- A.N. Skorobogatov, Descent on fibrations over the projective line, Amer. J. Math 118 (1996), 905-923 Zbl0880.14008MR1408492
- A.N. Skorobogatov, Torsors and rational points, (2001), Cambridge Univ. Press, Cambridge Zbl0972.14015MR1845760
- Sir Peter Swinnerton, - Dyer, Rational points on some pencils of conics with 6 singular fibres, Ann. Fac. Sci. Toulouse 8 (1999), 331-341 Zbl0976.14014MR1751446
- V. E. Voskresenskiǐ, Algebraic groups and their birational invariants, 179 (1998), Amer. Math. Soc., Providence Zbl0974.14034MR1634406
- J.-L. Colliot-Thélène, J.-J. Sansuc, Sir Peter Swinnerton-Dyer, Intersections of two quadrics and Châtelet surfaces. II., J. Reine Angew. Math. 374 (1987), 72-168 Zbl0622.14030MR876222
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.