Rational points on some pencils of conics with 6 singular fibres

Peter Swinnerton-Dyer

Annales de la Faculté des sciences de Toulouse : Mathématiques (1999)

  • Volume: 8, Issue: 2, page 331-341
  • ISSN: 0240-2963

How to cite

top

Swinnerton-Dyer, Peter. "Rational points on some pencils of conics with 6 singular fibres." Annales de la Faculté des sciences de Toulouse : Mathématiques 8.2 (1999): 331-341. <http://eudml.org/doc/73490>.

@article{Swinnerton1999,
author = {Swinnerton-Dyer, Peter},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {Hasse principle; weak approximation; Brauer-Manin obstruction; universal torsor; pencil of conics},
language = {eng},
number = {2},
pages = {331-341},
publisher = {UNIVERSITE PAUL SABATIER},
title = {Rational points on some pencils of conics with 6 singular fibres},
url = {http://eudml.org/doc/73490},
volume = {8},
year = {1999},
}

TY - JOUR
AU - Swinnerton-Dyer, Peter
TI - Rational points on some pencils of conics with 6 singular fibres
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1999
PB - UNIVERSITE PAUL SABATIER
VL - 8
IS - 2
SP - 331
EP - 341
LA - eng
KW - Hasse principle; weak approximation; Brauer-Manin obstruction; universal torsor; pencil of conics
UR - http://eudml.org/doc/73490
ER -

References

top
  1. [1] Colliot-Thélène J.-L.and Sansuc J.-J., La descente sur les variétés rationnelles II, Duke Math. J.54 (1987), 375-492. Zbl0659.14028MR899402
  2. [2] Colliot-Thélène J.-L., Sansuc J.-J. and Sir Peter Swinnerton-Dyer, Intersections of two quadrics and Châtelet surfaces, J. reine angew. Math.373 (1987), 37-107 and 374 (1987), 72-168. Zbl0622.14030
  3. [3] Colliot-Thélène J.-L. and Sir Peter Swinnerton-Dyer, Hasse principle and weak approximation for pencils of Severi-Brauer and similar varieties, J. reine angew. Math.453 (1994), 49-112. Zbl0805.14010MR1285781
  4. [4] Manin Y.I., Cubic Forms, algebra, geometry, arithmetic. (2nd edition, North-Holland, 1986) Zbl0582.14010MR833513
  5. [5] Sir Peter Swinnerton-Dyer, The Brauer group of cubic surfaces, Math. Proc. Camb. Phil. Soc.113 (1993), 449-460. Zbl0804.14018MR1207510

NotesEmbed ?

top

You must be logged in to post comments.