The Serre problem with Reinhardt fibers

Peter Pflug[1]; Wlodzimierz Zwonek[2]

  • [1] Carl von Ossietzky Universität Oldenburg, Fachbereich Mathematik, Postfach 2503, 26111 Oldenburg (Allemagne)
  • [2] Uniwersytet Jagiellonski, Instytut Matematyki, Reymonta 4, 30-059 Kraków (Pologne)

Annales de l’institut Fourier (2004)

  • Volume: 54, Issue: 1, page 129-146
  • ISSN: 0373-0956

Abstract

top
The Serre problem is solved for fiber bundles whose fibers are two-dimensional pseudoconvex hyperbolic Reinhardt domains.

How to cite

top

Pflug, Peter, and Zwonek, Wlodzimierz. "The Serre problem with Reinhardt fibers." Annales de l’institut Fourier 54.1 (2004): 129-146. <http://eudml.org/doc/116101>.

@article{Pflug2004,
abstract = {The Serre problem is solved for fiber bundles whose fibers are two-dimensional pseudoconvex hyperbolic Reinhardt domains.},
affiliation = {Carl von Ossietzky Universität Oldenburg, Fachbereich Mathematik, Postfach 2503, 26111 Oldenburg (Allemagne); Uniwersytet Jagiellonski, Instytut Matematyki, Reymonta 4, 30-059 Kraków (Pologne)},
author = {Pflug, Peter, Zwonek, Wlodzimierz},
journal = {Annales de l’institut Fourier},
keywords = {Serre problem; hyperbolic Reinhardt domains},
language = {eng},
number = {1},
pages = {129-146},
publisher = {Association des Annales de l'Institut Fourier},
title = {The Serre problem with Reinhardt fibers},
url = {http://eudml.org/doc/116101},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Pflug, Peter
AU - Zwonek, Wlodzimierz
TI - The Serre problem with Reinhardt fibers
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 1
SP - 129
EP - 146
AB - The Serre problem is solved for fiber bundles whose fibers are two-dimensional pseudoconvex hyperbolic Reinhardt domains.
LA - eng
KW - Serre problem; hyperbolic Reinhardt domains
UR - http://eudml.org/doc/116101
ER -

References

top
  1. H. Cartan, Sur les transformations analytiques des domaines cerclés et semicerclés bornés, Math. Ann 106 (1932), 540-573 Zbl0004.22002MR1512773
  2. G. Coeuré, J.-J. Loeb, A counterexample to the Serre problem with a bounded domain in 2 as fiber, Ann. Math. 122 (1985), 329-334 Zbl0585.32030MR808221
  3. J.-P. Demailly, Un exemple de fibré holomorphe non de Stein à fibré 2 ayant pour base le disque ou le plan, Invent. Math. 48 (1978), 293-302 Zbl0372.32012MR508989
  4. A. Hirschowitz, Domains de Stein et fonctions holomorphes bornées, Math. Ann 213 (1975), 185-193 Zbl0284.32011MR393563
  5. A.V. Isaev, S.G. Krantz, Domains with non-compact automorphism group: a survey, Adv. Math. 146 (1999), 1-38 Zbl1040.32019MR1706680
  6. K. Königsberger, Über die Holomorphie-Vollständigkeit lokaltrivialer Faserräume, Math. Ann 189 (1970), 178-184 Zbl0203.39001MR268410
  7. N.G. Kruzhilin, Holomorphic automorphism of hyperbolic Reinhardt domains, Math. USSR Izv 32 (1989), 15-38 Zbl0663.32019MR936521
  8. J.-J. Loeb, Un nouveau contre-exemple a une conjecture de Serre, (1984) 
  9. N. Mok, The Serre problem on Riemann surfaces, Math. Ann 258 (1981), 145-168 Zbl0497.32013MR641821
  10. R. Narasimhan, Several complex variables, (1971), The University of Chicago Press, Chicago-London Zbl0223.32001MR342725
  11. P. Pflug, About the Carathéodory completeness of all Reinhardt domains, Functional Analysis, Holomorphy and Approximation Theory II (1984), 331-337, North-Holland, Amsterdam Zbl0536.32001MR771335
  12. S. Shimizu, Automorphisms and equivalence of bounded Reinhardt domains not containing the origin, Tohoku Math. J. 40 (1988), 119-152 Zbl0646.32003MR927081
  13. N. Sibony, Fibrés holomorphes et métrique de Carathéodory, C. R. Acad. Sc. Paris 279 (1974), 261-264 Zbl0318.32029MR352550
  14. Y.T. Siu, Holomorphic fiber bundles whose fibers are bounded Stein domains with first Betti number, Math. Ann 219 (1976), 171-192 Zbl0318.32010MR390303
  15. H. Skoda, Fibrés holomorphes à base fibre de Stein, Invent. Math 43 (1977), 97-107 Zbl0365.32018MR508091
  16. J.-L. Stehlé, Fonctions plurisousharmoniques et convexité holomorphe de certaines fibrés analytiques, Séminaire Pierre Lelong (Analyse, 1973/1974) 474 (1975), 155-179, Springer, Berlin Zbl0309.32011MR399524
  17. D. Zaffran, Serre problem and Inoue-Hirzebruch surfaces, Math. Ann 319 (2001), 395-420 Zbl0978.32008MR1815117
  18. W. Zwonek, On hyperbolicity of pseudoconvex Reinhardt domains, Arch. Math 72 (1999), 304-314 Zbl0938.32003MR1678013
  19. W. Zwonek, Completeness, Reinhardt domains and the method of complex geodesics in the theory of invariant functions, Diss. Math 388 (2000), 1-103 Zbl0965.32004MR1785672

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.