Steinness of bundles with fiber a Reinhardt bounded domain
Bulletin de la Société Mathématique de France (2006)
- Volume: 134, Issue: 4, page 451-473
- ISSN: 0037-9484
Access Full Article
topAbstract
topHow to cite
topOeljeklaus, Karl, and Zaffran, Dan. "Steinness of bundles with fiber a Reinhardt bounded domain." Bulletin de la Société Mathématique de France 134.4 (2006): 451-473. <http://eudml.org/doc/272463>.
@article{Oeljeklaus2006,
abstract = {Let $E$ denote a holomorphic bundle with fiber $D$ and with basis $B$. Both $D$ and $B$ are assumed to be Stein. For $D$ a Reinhardt bounded domain of dimension $d=2$ or $3$, we give a necessary and sufficient condition on $D$ for the existence of a non-Stein such $E$ (Theorem $1$); for $d=2$, we give necessary and sufficient criteria for $E$ to be Stein (Theorem $2$). For $D$ a Reinhardt bounded domain of any dimension not intersecting any coordinate hyperplane, we give a sufficient criterion for $E$ to be Stein (Theorem $3$).},
author = {Oeljeklaus, Karl, Zaffran, Dan},
journal = {Bulletin de la Société Mathématique de France},
keywords = {holomorphic fiber bundle; Stein manifold; bounded Reinhardt domain; Serre problem},
language = {eng},
number = {4},
pages = {451-473},
publisher = {Société mathématique de France},
title = {Steinness of bundles with fiber a Reinhardt bounded domain},
url = {http://eudml.org/doc/272463},
volume = {134},
year = {2006},
}
TY - JOUR
AU - Oeljeklaus, Karl
AU - Zaffran, Dan
TI - Steinness of bundles with fiber a Reinhardt bounded domain
JO - Bulletin de la Société Mathématique de France
PY - 2006
PB - Société mathématique de France
VL - 134
IS - 4
SP - 451
EP - 473
AB - Let $E$ denote a holomorphic bundle with fiber $D$ and with basis $B$. Both $D$ and $B$ are assumed to be Stein. For $D$ a Reinhardt bounded domain of dimension $d=2$ or $3$, we give a necessary and sufficient condition on $D$ for the existence of a non-Stein such $E$ (Theorem $1$); for $d=2$, we give necessary and sufficient criteria for $E$ to be Stein (Theorem $2$). For $D$ a Reinhardt bounded domain of any dimension not intersecting any coordinate hyperplane, we give a sufficient criterion for $E$ to be Stein (Theorem $3$).
LA - eng
KW - holomorphic fiber bundle; Stein manifold; bounded Reinhardt domain; Serre problem
UR - http://eudml.org/doc/272463
ER -
References
top- [1] G. Cœuré & J.-J. Lœb – « A counterexample to the Serre problem with a bounded domain of as fiber », Ann. of Math.122 (1985), p. 329–334. Zbl0585.32030MR808221
- [2] K. Diederich & J. Fornaess – « Pseudoconvex domains: bounded strictly plurisubharmonic exhaustion functions », Invent. Math.39 (1977), p. 129–141. Zbl0353.32025MR437806
- [3] P. Heinzner – « Kompakte Transformationsgruppen Steinscher Räume (Compact transformation groups of Stein spaces) », Math. Ann.285 (1989), p. 13–28. Zbl0679.32030MR1010188
- [4] Y. Hellegouarch – Invitation to the mathematics of Fermat-Wiles, Academic Press, Inc., San Diego, CA, 2002. Zbl1036.11001MR1858559
- [5] A. Hirschowitz – « Domaines de Stein et fonctions holomorphes bornées », Math. Ann.213 (1975), p. 185–193. Zbl0284.32011MR393563
- [6] W. Kaup – « Reelle Transformationsgruppen und invariante Metriken auf komplexen Räume », Invent. Math.3 (1967), p. 43–70. Zbl0157.13401MR216030
- [7] N. Mok – « Le problème de Serre pour les surfaces de Riemann », C. R. Acad. Sci. Paris Sér. A-B 290 (1980), p. A179–A180. Zbl0427.32015MR564155
- [8] R. Narasimhan – Several complex variables, Chicago Lectures in Math., University of Chicago Press, Chicago, IL, 1995. Zbl0223.32001MR1324108
- [9] P. Pflug & W. Zwonek – « The Serre problem with Reinhardt fibers », Ann. Inst. Fourier54 (2004), p. 129–146. Zbl1080.32016MR2069123
- [10] J.-P. Serre – « Quelques problèmes globaux relatifs aux variétés de Stein », Colloque sur les fonctions de plusieurs variables, Bruxelles, 1953, p. 57–68. Zbl0053.05302MR64155
- [11] S. Shimizu – « Automorphisms of bounded Reinhardt domains », Japan. J. Math. (N.S.) 15 (1989), p. 385–414. Zbl0712.32003MR1039248
- [12] N. Sibony – « Fibrés holomorphes et métrique de Carathéodory », C. R. Acad. Sci. Paris Sér. A279 (1974), p. 261–264. Zbl0318.32029MR352550
- [13] Y. T. Siu – « All plane domains are Banach-Stein », Manuscripta Math.14 (1974), p. 101–105. Zbl0294.32010MR361157
- [14] —, « Holomorphic fiber bundles whose fibers are bounded Stein domains with zero first Betti number », Math. Ann.219 (1976), p. 171–192. Zbl0318.32010MR390303
- [15] —, « Pseudoconvexity and the problem of Levi », Bull. Amer. Math. Soc.84 (1978), p. 481–512. Zbl0423.32008MR477104
- [16] H. Skoda – « Fibrés holomorphes à base et à fibre de Stein », Invent. Math.43 (1977), p. 97–107. Zbl0365.32018MR508091
- [17] J.-L. Stehlé – « Fonctions plurisousharmoniques et convexité holomorphe de certains fibrés analytiques », C. R. Acad. Sci. Paris Sér. A279 (1974), p. 235–238. Zbl0287.32013MR374493
- [18] K. Stein – « Überlagerungen holomorph-vollständiger komplexer Räume », Arch. Math.7 (1956), p. 354–361. Zbl0072.08002MR84836
- [19] R. Steinberg – Conjugacy classes in algebraic groups, Lecture Notes in Math., vol. 366, Springer-Verlag, Berlin-New York, 1974, notes by V.V.Deodhar. Zbl0281.20037MR352279
- [20] D. Zaffran – « Serre problem and Inoue-Hirzebruch surfaces », Math. Ann.319 (2001), p. 395–420. Zbl0978.32008MR1815117
- [21] W. Zwonek – « On hyperbolicity of pseudoconvex Reinhardt domains », Arch. Math. (Basel) 72 (1999), p. 304–314. Zbl0938.32003MR1678013
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.