Steinness of bundles with fiber a Reinhardt bounded domain

Karl Oeljeklaus; Dan Zaffran

Bulletin de la Société Mathématique de France (2006)

  • Volume: 134, Issue: 4, page 451-473
  • ISSN: 0037-9484

Abstract

top
Let E denote a holomorphic bundle with fiber D and with basis B . Both D and B are assumed to be Stein. For D a Reinhardt bounded domain of dimension d = 2 or 3 , we give a necessary and sufficient condition on D for the existence of a non-Stein such E (Theorem 1 ); for d = 2 , we give necessary and sufficient criteria for E to be Stein (Theorem 2 ). For D a Reinhardt bounded domain of any dimension not intersecting any coordinate hyperplane, we give a sufficient criterion for E to be Stein (Theorem 3 ).

How to cite

top

Oeljeklaus, Karl, and Zaffran, Dan. "Steinness of bundles with fiber a Reinhardt bounded domain." Bulletin de la Société Mathématique de France 134.4 (2006): 451-473. <http://eudml.org/doc/272463>.

@article{Oeljeklaus2006,
abstract = {Let $E$ denote a holomorphic bundle with fiber $D$ and with basis $B$. Both $D$ and $B$ are assumed to be Stein. For $D$ a Reinhardt bounded domain of dimension $d=2$ or $3$, we give a necessary and sufficient condition on $D$ for the existence of a non-Stein such $E$ (Theorem $1$); for $d=2$, we give necessary and sufficient criteria for $E$ to be Stein (Theorem $2$). For $D$ a Reinhardt bounded domain of any dimension not intersecting any coordinate hyperplane, we give a sufficient criterion for $E$ to be Stein (Theorem $3$).},
author = {Oeljeklaus, Karl, Zaffran, Dan},
journal = {Bulletin de la Société Mathématique de France},
keywords = {holomorphic fiber bundle; Stein manifold; bounded Reinhardt domain; Serre problem},
language = {eng},
number = {4},
pages = {451-473},
publisher = {Société mathématique de France},
title = {Steinness of bundles with fiber a Reinhardt bounded domain},
url = {http://eudml.org/doc/272463},
volume = {134},
year = {2006},
}

TY - JOUR
AU - Oeljeklaus, Karl
AU - Zaffran, Dan
TI - Steinness of bundles with fiber a Reinhardt bounded domain
JO - Bulletin de la Société Mathématique de France
PY - 2006
PB - Société mathématique de France
VL - 134
IS - 4
SP - 451
EP - 473
AB - Let $E$ denote a holomorphic bundle with fiber $D$ and with basis $B$. Both $D$ and $B$ are assumed to be Stein. For $D$ a Reinhardt bounded domain of dimension $d=2$ or $3$, we give a necessary and sufficient condition on $D$ for the existence of a non-Stein such $E$ (Theorem $1$); for $d=2$, we give necessary and sufficient criteria for $E$ to be Stein (Theorem $2$). For $D$ a Reinhardt bounded domain of any dimension not intersecting any coordinate hyperplane, we give a sufficient criterion for $E$ to be Stein (Theorem $3$).
LA - eng
KW - holomorphic fiber bundle; Stein manifold; bounded Reinhardt domain; Serre problem
UR - http://eudml.org/doc/272463
ER -

References

top
  1. [1] G. Cœuré & J.-J. Lœb – « A counterexample to the Serre problem with a bounded domain of 2 as fiber », Ann. of Math.122 (1985), p. 329–334. Zbl0585.32030MR808221
  2. [2] K. Diederich & J. Fornaess – « Pseudoconvex domains: bounded strictly plurisubharmonic exhaustion functions », Invent. Math.39 (1977), p. 129–141. Zbl0353.32025MR437806
  3. [3] P. Heinzner – « Kompakte Transformationsgruppen Steinscher Räume (Compact transformation groups of Stein spaces) », Math. Ann.285 (1989), p. 13–28. Zbl0679.32030MR1010188
  4. [4] Y. Hellegouarch – Invitation to the mathematics of Fermat-Wiles, Academic Press, Inc., San Diego, CA, 2002. Zbl1036.11001MR1858559
  5. [5] A. Hirschowitz – « Domaines de Stein et fonctions holomorphes bornées », Math. Ann.213 (1975), p. 185–193. Zbl0284.32011MR393563
  6. [6] W. Kaup – « Reelle Transformationsgruppen und invariante Metriken auf komplexen Räume », Invent. Math.3 (1967), p. 43–70. Zbl0157.13401MR216030
  7. [7] N. Mok – « Le problème de Serre pour les surfaces de Riemann », C. R. Acad. Sci. Paris Sér. A-B 290 (1980), p. A179–A180. Zbl0427.32015MR564155
  8. [8] R. Narasimhan – Several complex variables, Chicago Lectures in Math., University of Chicago Press, Chicago, IL, 1995. Zbl0223.32001MR1324108
  9. [9] P. Pflug & W. Zwonek – « The Serre problem with Reinhardt fibers », Ann. Inst. Fourier54 (2004), p. 129–146. Zbl1080.32016MR2069123
  10. [10] J.-P. Serre – « Quelques problèmes globaux relatifs aux variétés de Stein », Colloque sur les fonctions de plusieurs variables, Bruxelles, 1953, p. 57–68. Zbl0053.05302MR64155
  11. [11] S. Shimizu – « Automorphisms of bounded Reinhardt domains », Japan. J. Math. (N.S.) 15 (1989), p. 385–414. Zbl0712.32003MR1039248
  12. [12] N. Sibony – « Fibrés holomorphes et métrique de Carathéodory », C. R. Acad. Sci. Paris Sér. A279 (1974), p. 261–264. Zbl0318.32029MR352550
  13. [13] Y. T. Siu – « All plane domains are Banach-Stein », Manuscripta Math.14 (1974), p. 101–105. Zbl0294.32010MR361157
  14. [14] —, « Holomorphic fiber bundles whose fibers are bounded Stein domains with zero first Betti number », Math. Ann.219 (1976), p. 171–192. Zbl0318.32010MR390303
  15. [15] —, « Pseudoconvexity and the problem of Levi », Bull. Amer. Math. Soc.84 (1978), p. 481–512. Zbl0423.32008MR477104
  16. [16] H. Skoda – « Fibrés holomorphes à base et à fibre de Stein », Invent. Math.43 (1977), p. 97–107. Zbl0365.32018MR508091
  17. [17] J.-L. Stehlé – « Fonctions plurisousharmoniques et convexité holomorphe de certains fibrés analytiques », C. R. Acad. Sci. Paris Sér. A279 (1974), p. 235–238. Zbl0287.32013MR374493
  18. [18] K. Stein – « Überlagerungen holomorph-vollständiger komplexer Räume », Arch. Math.7 (1956), p. 354–361. Zbl0072.08002MR84836
  19. [19] R. Steinberg – Conjugacy classes in algebraic groups, Lecture Notes in Math., vol. 366, Springer-Verlag, Berlin-New York, 1974, notes by V.V.Deodhar. Zbl0281.20037MR352279
  20. [20] D. Zaffran – « Serre problem and Inoue-Hirzebruch surfaces », Math. Ann.319 (2001), p. 395–420. Zbl0978.32008MR1815117
  21. [21] W. Zwonek – « On hyperbolicity of pseudoconvex Reinhardt domains », Arch. Math. (Basel) 72 (1999), p. 304–314. Zbl0938.32003MR1678013

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.