Stratification theory from the Newton polyhedron point of view

Ould M. Abderrahmane[1]

  • [1] Saitama University, Faculty of Science, Department of Mathematics, 255 Shimo-Okubo, Urawa 338-8570 (Japon)

Annales de l’institut Fourier (2004)

  • Volume: 54, Issue: 2, page 235-252
  • ISSN: 0373-0956

Abstract

top
Recently, T. Fukui and L. Paunescu introduced a weighted version of the ( w ) -regularity condition and Kuo’s ratio test condition. In this approach, we consider the ( w ) - regularity condition and ( c ) -regularity related to a Newton filtration.

How to cite

top

Abderrahmane, Ould M.. "Stratification theory from the Newton polyhedron point of view." Annales de l’institut Fourier 54.2 (2004): 235-252. <http://eudml.org/doc/116110>.

@article{Abderrahmane2004,
abstract = {Recently, T. Fukui and L. Paunescu introduced a weighted version of the $(w)$-regularity condition and Kuo’s ratio test condition. In this approach, we consider the $(w)$- regularity condition and $(c)$-regularity related to a Newton filtration.},
affiliation = {Saitama University, Faculty of Science, Department of Mathematics, 255 Shimo-Okubo, Urawa 338-8570 (Japon)},
author = {Abderrahmane, Ould M.},
journal = {Annales de l’institut Fourier},
keywords = {stratification; regularity condition; Newton polyhedron; singularities; stratified sets},
language = {eng},
number = {2},
pages = {235-252},
publisher = {Association des Annales de l'Institut Fourier},
title = {Stratification theory from the Newton polyhedron point of view},
url = {http://eudml.org/doc/116110},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Abderrahmane, Ould M.
TI - Stratification theory from the Newton polyhedron point of view
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 2
SP - 235
EP - 252
AB - Recently, T. Fukui and L. Paunescu introduced a weighted version of the $(w)$-regularity condition and Kuo’s ratio test condition. In this approach, we consider the $(w)$- regularity condition and $(c)$-regularity related to a Newton filtration.
LA - eng
KW - stratification; regularity condition; Newton polyhedron; singularities; stratified sets
UR - http://eudml.org/doc/116110
ER -

References

top
  1. Ould. M. Abderrahmane, Polyèdre de Newton et trivialité en famille, J. Math. Soc. Japan 54 (2002), 513-550 Zbl1031.58024MR1900955
  2. K. Bekka, ( c ) -régularité et trivialité topologique, 1462 (1989), 42-62, Springer Zbl0733.58003MR1129023
  3. K. Bekka, S. Koike, The Kuo condition, an inequality Thom’s type and ( c ) -regularity, Topology 37 (1998), 45-62 Zbl0894.58005MR1480876
  4. J. Briançon, J.P. Speder, La trivialité topologique n'implique pas les conditions de Whitney, C. R. Acad. Sci. Paris 280 (1976), 365-367 Zbl0331.32010MR425165
  5. J. Damon, T. Gaffney, Topological Trivaility of Deformations of Functions and Newton filtrations, Invent. Math. 72 (1983), 335-358 Zbl0519.58021MR704395
  6. T. Fukui, L. Paunescu, Stratification theory from the weighted point of view, Canad. J. math 53 (2001), 73-97 Zbl0983.32006MR1814966
  7. A.G. Kouchnirenko, Polyèdres de Newton et nombres de Milnor, Invent. math 32 (1976), 1-31 Zbl0328.32007MR419433
  8. T.-C. Kuo, The ratio test for analytic Whitney stratification, Proc. of Liverpool Singularities 192 (1971), 141-149, Springer Zbl0246.32006MR279333
  9. M. Oka, On the weak simultaneous resolution of a negligible truncation of the Newton boundary, Contemporary. Math 90 (1989), 199-210 Zbl0682.32011MR1000603
  10. L. Paunescu, A weighted version of the Kuiper-Kuo-Bochnak-Łojasiewicz theorem, J. Algebraic Geom 2 (1993), 69-79 Zbl0779.32003
  11. L. Paunescu, Invariants associated with blow-analytic homeomorphisms, Proc. Japan Acad, ser. A 78 (2002), 194-198 Zbl1040.32025MR1950169
  12. A. Parusiński, Topological triviality of μ -constant deformations of type f ( x ) + t g ( x ) , Bull. London math. Soc 31 (1999), 686-692 Zbl1020.32021MR1711027
  13. R. Thom, Ensembles et morphismes stratifiés, Bull. Amer. math. Soc 75 (1969), 240-284 Zbl0197.20502MR239613
  14. D. Trotman, Comparing regularity conditions on stratification, Proc. Sympos. Pure. math 40 (1983), 575-586 Zbl0519.58009MR713282
  15. J.-L. Verdier, Stratification de Whitney et théorème de Bertini-Sard, Invent. math 36 (1976), 295-312 Zbl0333.32010MR481096
  16. H. Whitney, Tangents to an analytic variety, Ann. of Math 81 (1965), 496-549 Zbl0152.27701MR192520

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.