Locally connected exceptional minimal sets of surface homeomorphisms

Andrzej Biś[1]; Hiromichi Nakayama; Pawel Walczak

  • [1] Lódź; University, faculty of mathematics, Banacha 22, 90238 Lódź (Pologne), Hiroshima University, Faculty of Integrated Arts and Sciences, 1-7-1 Kagamiyama, Higashi-Hiroshima, 739-8521 (Japon)

Annales de l’institut Fourier (2004)

  • Volume: 54, Issue: 3, page 711-731
  • ISSN: 0373-0956

Abstract

top
We deal with locally connected exceptional minimal sets of surface homeomorphisms. If the surface is different from the torus, such a minimal set is either finite or a finite disjoint union of simple closed curves. On the torus, such a set can admit also a structure similar to that of the Sierpiński curve.

How to cite

top

Biś, Andrzej, Nakayama, Hiromichi, and Walczak, Pawel. "Locally connected exceptional minimal sets of surface homeomorphisms." Annales de l’institut Fourier 54.3 (2004): 711-731. <http://eudml.org/doc/116124>.

@article{Biś2004,
abstract = {We deal with locally connected exceptional minimal sets of surface homeomorphisms. If the surface is different from the torus, such a minimal set is either finite or a finite disjoint union of simple closed curves. On the torus, such a set can admit also a structure similar to that of the Sierpiński curve.},
affiliation = {Lódź; University, faculty of mathematics, Banacha 22, 90238 Lódź (Pologne), Hiroshima University, Faculty of Integrated Arts and Sciences, 1-7-1 Kagamiyama, Higashi-Hiroshima, 739-8521 (Japon)},
author = {Biś, Andrzej, Nakayama, Hiromichi, Walczak, Pawel},
journal = {Annales de l’institut Fourier},
keywords = {locally connected minimal sets; surface homeomorphisms},
language = {eng},
number = {3},
pages = {711-731},
publisher = {Association des Annales de l'Institut Fourier},
title = {Locally connected exceptional minimal sets of surface homeomorphisms},
url = {http://eudml.org/doc/116124},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Biś, Andrzej
AU - Nakayama, Hiromichi
AU - Walczak, Pawel
TI - Locally connected exceptional minimal sets of surface homeomorphisms
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 3
SP - 711
EP - 731
AB - We deal with locally connected exceptional minimal sets of surface homeomorphisms. If the surface is different from the torus, such a minimal set is either finite or a finite disjoint union of simple closed curves. On the torus, such a set can admit also a structure similar to that of the Sierpiński curve.
LA - eng
KW - locally connected minimal sets; surface homeomorphisms
UR - http://eudml.org/doc/116124
ER -

References

top
  1. J.M. Aarts, L.G. Oversteegen, The dynamics of the Sierpiński curve, Proc. Amer. Math. Soc. 120 (1994), 965-968 Zbl0794.54043MR1217452
  2. A. Biś, H. Nakayama, P. Walczak, Modelling minimal foliated spaces with positive entropy Zbl1137.57028
  3. H. Chu, Algebraic topology criteria for minimal sets, Proc. Amer. Math. Soc. 13 (1962), 503-508 Zbl0108.17602MR138106
  4. R.J. Daverman, Decompositions of manifolds, vol. 124 (1986), Academic Press, New York Zbl0608.57002MR872468
  5. A. Fathi, M. Herman, Existence de difféomorphismes minimaux, Astérisque 49 (1977), 37-59 Zbl0374.58010MR482843
  6. E.E. Floyd, A nonhomogeneous minimal set, Bull. Amer. Math. Soc. 55 (1949), 957-960 Zbl0035.36002MR33535
  7. W.H. Gottschalk, G.A. Hedlund, Topological dynamics, vol. 36 (1955), Amer. Math. Soc. Colloq. Publ. Zbl0067.15204MR74810
  8. M. Handel, A pathological area preserving 𝒞 diffeomorphisms of the plane, Proc. Amer. Math. Soc. 86 (1982), 163-168 Zbl0509.58031MR663889
  9. H. Kato, The nonexistence of expansive homeomorphisms of Peano continua in the plane, Topology Appl. 34 (1990), 161-165 Zbl0713.54035MR1041770
  10. A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems, vol. 54 (1995), Cambridge University Press, Cambridge Zbl0878.58020MR1326374
  11. S. Kim, On low dimensional minimal sets, Pacific Math. J. 43 (1972), 171-174 Zbl0213.50503MR314025
  12. K. Kuratowski, Topology II, (1968), Academic Press, New York-London; Państwowe Wydawnictwo Naukowe, Warsaw MR259835
  13. P.D. McSwiggen, Diffeomorphisms of the torus with wandering domains, Proc. Amer. Math. Soc. 117 (1993), 1175-1186 Zbl0830.54030MR1154247
  14. R.L. Moore, Concerning upper semi-continuous collections of continua, Trans. Amer. Math. Soc. 27 (1925), 416-428 Zbl51.0464.03MR1501320
  15. A. Norton, An area approach to wandering domains for smooth surface endomorphisms, Ergodic Theory Dynam. Systems 11 (1991), 181-187 Zbl0703.58028MR1101089
  16. A. Norton, D. Sullivan, Wandering domains and invariant conformal structures for mappings of the 2-torus, Ann. Acad. Sci. Fenn. Math. 21 (1996), 51-68 Zbl0871.58070MR1375505
  17. A.N. Starkov, Minimal sets of homogeneous flows, Ergodic Theory Dynam. Systems 15 (1995), 361-377 Zbl1008.22004MR1332409
  18. G.T. Whyburn, Topological characterization of the Sierpiński curve, Fund. Math. 45 (1958), 320-324 Zbl0081.16904MR99638

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.