Locally connected exceptional minimal sets of surface homeomorphisms
Andrzej Biś[1]; Hiromichi Nakayama; Pawel Walczak
- [1] Lódź; University, faculty of mathematics, Banacha 22, 90238 Lódź (Pologne), Hiroshima University, Faculty of Integrated Arts and Sciences, 1-7-1 Kagamiyama, Higashi-Hiroshima, 739-8521 (Japon)
Annales de l’institut Fourier (2004)
- Volume: 54, Issue: 3, page 711-731
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topBiś, Andrzej, Nakayama, Hiromichi, and Walczak, Pawel. "Locally connected exceptional minimal sets of surface homeomorphisms." Annales de l’institut Fourier 54.3 (2004): 711-731. <http://eudml.org/doc/116124>.
@article{Biś2004,
abstract = {We deal with locally connected exceptional minimal sets of surface homeomorphisms. If the
surface is different from the torus, such a minimal set is either finite or a finite
disjoint union of simple closed curves. On the torus, such a set can admit also a
structure similar to that of the Sierpiński curve.},
affiliation = {Lódź; University, faculty of mathematics, Banacha 22, 90238 Lódź (Pologne), Hiroshima University, Faculty of Integrated Arts and Sciences, 1-7-1 Kagamiyama, Higashi-Hiroshima, 739-8521 (Japon)},
author = {Biś, Andrzej, Nakayama, Hiromichi, Walczak, Pawel},
journal = {Annales de l’institut Fourier},
keywords = {locally connected minimal sets; surface homeomorphisms},
language = {eng},
number = {3},
pages = {711-731},
publisher = {Association des Annales de l'Institut Fourier},
title = {Locally connected exceptional minimal sets of surface homeomorphisms},
url = {http://eudml.org/doc/116124},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Biś, Andrzej
AU - Nakayama, Hiromichi
AU - Walczak, Pawel
TI - Locally connected exceptional minimal sets of surface homeomorphisms
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 3
SP - 711
EP - 731
AB - We deal with locally connected exceptional minimal sets of surface homeomorphisms. If the
surface is different from the torus, such a minimal set is either finite or a finite
disjoint union of simple closed curves. On the torus, such a set can admit also a
structure similar to that of the Sierpiński curve.
LA - eng
KW - locally connected minimal sets; surface homeomorphisms
UR - http://eudml.org/doc/116124
ER -
References
top- J.M. Aarts, L.G. Oversteegen, The dynamics of the Sierpiński curve, Proc. Amer. Math. Soc. 120 (1994), 965-968 Zbl0794.54043MR1217452
- A. Biś, H. Nakayama, P. Walczak, Modelling minimal foliated spaces with positive entropy Zbl1137.57028
- H. Chu, Algebraic topology criteria for minimal sets, Proc. Amer. Math. Soc. 13 (1962), 503-508 Zbl0108.17602MR138106
- R.J. Daverman, Decompositions of manifolds, vol. 124 (1986), Academic Press, New York Zbl0608.57002MR872468
- A. Fathi, M. Herman, Existence de difféomorphismes minimaux, Astérisque 49 (1977), 37-59 Zbl0374.58010MR482843
- E.E. Floyd, A nonhomogeneous minimal set, Bull. Amer. Math. Soc. 55 (1949), 957-960 Zbl0035.36002MR33535
- W.H. Gottschalk, G.A. Hedlund, Topological dynamics, vol. 36 (1955), Amer. Math. Soc. Colloq. Publ. Zbl0067.15204MR74810
- M. Handel, A pathological area preserving diffeomorphisms of the plane, Proc. Amer. Math. Soc. 86 (1982), 163-168 Zbl0509.58031MR663889
- H. Kato, The nonexistence of expansive homeomorphisms of Peano continua in the plane, Topology Appl. 34 (1990), 161-165 Zbl0713.54035MR1041770
- A. Katok, B. Hasselblatt, Introduction to the modern theory of dynamical systems, vol. 54 (1995), Cambridge University Press, Cambridge Zbl0878.58020MR1326374
- S. Kim, On low dimensional minimal sets, Pacific Math. J. 43 (1972), 171-174 Zbl0213.50503MR314025
- K. Kuratowski, Topology II, (1968), Academic Press, New York-London; Państwowe Wydawnictwo Naukowe, Warsaw MR259835
- P.D. McSwiggen, Diffeomorphisms of the torus with wandering domains, Proc. Amer. Math. Soc. 117 (1993), 1175-1186 Zbl0830.54030MR1154247
- R.L. Moore, Concerning upper semi-continuous collections of continua, Trans. Amer. Math. Soc. 27 (1925), 416-428 Zbl51.0464.03MR1501320
- A. Norton, An area approach to wandering domains for smooth surface endomorphisms, Ergodic Theory Dynam. Systems 11 (1991), 181-187 Zbl0703.58028MR1101089
- A. Norton, D. Sullivan, Wandering domains and invariant conformal structures for mappings of the 2-torus, Ann. Acad. Sci. Fenn. Math. 21 (1996), 51-68 Zbl0871.58070MR1375505
- A.N. Starkov, Minimal sets of homogeneous flows, Ergodic Theory Dynam. Systems 15 (1995), 361-377 Zbl1008.22004MR1332409
- G.T. Whyburn, Topological characterization of the Sierpiński curve, Fund. Math. 45 (1958), 320-324 Zbl0081.16904MR99638
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.