Page 1 Next

Displaying 1 – 20 of 25

Showing per page

A classification of inverse limit spaces of tent maps with periodic critical points

Lois Kailhofer (2003)

Fundamenta Mathematicae

We work within the one-parameter family of symmetric tent maps, where the slope is the parameter. Given two such tent maps f a , f b with periodic critical points, we show that the inverse limit spaces ( a , f a ) and ( b , g b ) are not homeomorphic when a ≠ b. To obtain our result, we define topological substructures of a composant, called “wrapping points” and “gaps”, and identify properties of these substructures preserved under a homeomorphism.

A fixed point theorem for branched covering maps of the plane

Alexander Blokh, Lex Oversteegen (2009)

Fundamenta Mathematicae

It is known that every homeomorphism of the plane which admits an invariant non-separating continuum has a fixed point in the continuum. In this paper we show that any branched covering map of the plane of degree d, |d| ≤ 2, which has an invariant, non-separating continuum Y, either has a fixed point in Y, or is such that Y contains a minimal (in the sense of inclusion among invariant continua), fully invariant, non-separating subcontinuum X. In the latter case, f has to be of degree -2 and X has...

Adding machines, endpoints, and inverse limit spaces

Lori Alvin, Karen Brucks (2010)

Fundamenta Mathematicae

Let f be a unimodal map in the logistic or symmetric tent family whose restriction to the omega limit set of the turning point is topologically conjugate to an adding machine. A combinatoric characterization is provided for endpoints of the inverse limit space (I,f), where I denotes the core of the map.

Attractors and Inverse Limits.

James Keesling (2008)

RACSAM

This paper surveys some recent results concerning inverse limits of tent maps. The survey concentrates on Ingram’s Conjecture. Some motivation is given for the study of such inverse limits.

Continuum many tent map inverse limits with homeomorphic postcritical ω-limit sets

Chris Good, Brian E. Raines (2006)

Fundamenta Mathematicae

We demonstrate that the set of topologically distinct inverse limit spaces of tent maps with a Cantor set for its postcritical ω-limit set has cardinality of the continuum. The set of folding points (i.e. points at which the space is not homeomorphic to the product of a zero-dimensional set and an arc) of each of these spaces is also a Cantor set.

Dynamics of commuting homeomorphisms of chainable continua

Christopher Mouron (2010)

Colloquium Mathematicae

A chainable continuum, X, and homeomorphisms, p,q: X → X, are constructed with the following properties: (1) p ∘ q = q ∘ p, (2) p, q have simple dynamics, (3) p ∘ q is a positively continuum-wise fully expansive homeomorphism that has positive entropy and is chaotic in the sense of Devaney and in the sense of Li and Yorke.

Embedding solenoids

Alex Clark, Robbert Fokkink (2004)

Fundamenta Mathematicae

A generalized solenoid is an inverse limit space with bonding maps that are (regular) covering maps of closed compact manifolds. We study the embedding properties of solenoids in linear space and in foliations.

Homeomorphisms of composants of Knaster continua

Sonja Štimac (2002)

Fundamenta Mathematicae

The Knaster continuum K p is defined as the inverse limit of the pth degree tent map. On every composant of the Knaster continuum we introduce an order and we consider some special points of the composant. These are used to describe the structure of the composants. We then prove that, for any integer p ≥ 2, all composants of K p having no endpoints are homeomorphic. This generalizes Bandt’s result which concerns the case p = 2.

Inhomogeneities in non-hyperbolic one-dimensional invariant sets

Brian E. Raines (2004)

Fundamenta Mathematicae

The topology of one-dimensional invariant sets (attractors) is of great interest. R. F. Williams [20] demonstrated that hyperbolic one-dimensional non-wandering sets can be represented as inverse limits of graphs with bonding maps that satisfy certain strong dynamical properties. These spaces have "homogeneous neighborhoods" in the sense that small open sets are homeomorphic to the product of a Cantor set and an arc. In this paper we examine inverse limits of graphs with more complicated bonding...

Inverse limit spaces of post-critically finite tent maps

Henk Bruin (2000)

Fundamenta Mathematicae

Let (I,T) be the inverse limit space of a post-critically finite tent map. Conditions are given under which these inverse limit spaces are pairwise nonhomeomorphic. This extends results of Barge & Diamond [2].

Inverse Limits, Economics, and Backward Dynamics.

Judy Kennedy (2008)

RACSAM

We survey recent papers on the problem of backward dynamics in economics, providing along the way a glimpse at the economics perspective, a discussion of the economic models and mathematical tools involved, and a list of applicable literature in both mathematics and economics.

Inverse limits on intervals using unimodal bonding maps having only periodic points whose periods are all the powers of two

W. Ingram, Robert Roe (1999)

Colloquium Mathematicae

We derive several properties of unimodal maps having only periodic points whose period is a power of 2. We then consider inverse limits on intervals using a single strongly unimodal bonding map having periodic points whose only periods are all the powers of 2. One such mapping is the logistic map, f λ ( x ) = 4λx(1-x) on [f(λ),λ], at the Feigenbaum limit, λ ≈ 0.89249. It is known that this map produces an hereditarily decomposable inverse limit with only three topologically different subcontinua. Other...

Locally connected exceptional minimal sets of surface homeomorphisms

Andrzej Biś, Hiromichi Nakayama, Pawel Walczak (2004)

Annales de l’institut Fourier

We deal with locally connected exceptional minimal sets of surface homeomorphisms. If the surface is different from the torus, such a minimal set is either finite or a finite disjoint union of simple closed curves. On the torus, such a set can admit also a structure similar to that of the Sierpiński curve.

Minimal nonhomogeneous continua

Henk Bruin, Sergiǐ Kolyada, L'ubomír Snoha (2003)

Colloquium Mathematicae

We show that there are (1) nonhomogeneous metric continua that admit minimal noninvertible maps but have the fixed point property for homeomorphisms, and (2) nonhomogeneous metric continua that admit both minimal noninvertible maps and minimal homeomorphisms. The former continua are constructed as quotient spaces of the torus or as subsets of the torus, the latter are constructed as subsets of the torus.

Minimal sets of non-resonant torus homeomorphisms

Ferry Kwakkel (2011)

Fundamenta Mathematicae

As was known to H. Poincaré, an orientation preserving circle homeomorphism without periodic points is either minimal or has no dense orbits, and every orbit accumulates on the unique minimal set. In the first case the minimal set is the circle, in the latter case a Cantor set. In this paper we study a two-dimensional analogue of this classical result: we classify the minimal sets of non-resonant torus homeomorphisms, that is, torus homeomorphisms isotopic to the identity for which the rotation...

Nonhyperbolic one-dimensional invariant sets with a countably infinite collection of inhomogeneities

Chris Good, Robin Knight, Brian Raines (2006)

Fundamenta Mathematicae

We examine the structure of countable closed invariant sets under a dynamical system on a compact metric space. We are motivated by a desire to understand the possible structures of inhomogeneities in one-dimensional nonhyperbolic sets (inverse limits of finite graphs), particularly when those inhomogeneities form a countable set. Using tools from descriptive set theory we prove a surprising restriction on the topological structure of these invariant sets if the map satisfies a weak repelling or...

On the classification of inverse limits of tent maps

Louis Block, Slagjana Jakimovik, Lois Kailhofer, James Keesling (2005)

Fundamenta Mathematicae

Let f s and f t be tent maps on the unit interval. In this paper we give a new proof of the fact that if the critical points of f s and f t are periodic and the inverse limit spaces ( I , f s ) and ( I , f t ) are homeomorphic, then s = t. This theorem was first proved by Kailhofer. The new proof in this paper simplifies the proof of Kailhofer. Using the techniques of the paper we are also able to identify certain isotopies between homeomorphisms on the inverse limit space.

Ordered group invariants for one-dimensional spaces

Inhyeop Yi (2001)

Fundamenta Mathematicae

We show that the Bruschlinsky group with the winding order is a homomorphism invariant for a class of one-dimensional inverse limit spaces. In particular we show that if a presentation of an inverse limit space satisfies the Simplicity Condition, then the Bruschlinsky group with the winding order of the inverse limit space is a dimension group and is a quotient of the dimension group with the standard order of the adjacency matrices associated with the presentation.

Currently displaying 1 – 20 of 25

Page 1 Next