Transfer matrices and transport for Schrödinger operators

François Germinet[1]; Alexander Kiselev; Serguei Tcheremchantsev

  • [1] Université de Cergy-Pontoise, laboratoire AGM, CNRS-UMR 8088, Dépt. de Mathématiques, 95302 Cergy-Pontoise Cédex, (France), University of Wisconsin, Department of Mathematics, Madison, WI 53706, (USA), Université d'Orléans, Laboratoire MAPMO, CNRS-UMR 6628, B.P. 6759, 45067 Orléans Cédex, (France)

Annales de l’institut Fourier (2004)

  • Volume: 54, Issue: 3, page 787-830
  • ISSN: 0373-0956

Abstract

top
We provide a general lower bound on the dynamics of one dimensional Schrödinger operators in terms of transfer matrices. In particular it yields a non trivial lower bound on the transport exponents as soon as the norm of transfer matrices does not grow faster than polynomially on a set of energies of full Lebesgue measure, and regardless of the nature of the spectrum. Applications to Hamiltonians with a) sparse, b) quasi-periodic, c) random decaying potential are provided. We also develop some general analysis of wave- packets that enables one to characterize transports exponents at low and large moments.

How to cite

top

Germinet, François, Kiselev, Alexander, and Tcheremchantsev, Serguei. "Transfer matrices and transport for Schrödinger operators." Annales de l’institut Fourier 54.3 (2004): 787-830. <http://eudml.org/doc/116127>.

@article{Germinet2004,
abstract = {We provide a general lower bound on the dynamics of one dimensional Schrödinger operators in terms of transfer matrices. In particular it yields a non trivial lower bound on the transport exponents as soon as the norm of transfer matrices does not grow faster than polynomially on a set of energies of full Lebesgue measure, and regardless of the nature of the spectrum. Applications to Hamiltonians with a) sparse, b) quasi-periodic, c) random decaying potential are provided. We also develop some general analysis of wave- packets that enables one to characterize transports exponents at low and large moments.},
affiliation = {Université de Cergy-Pontoise, laboratoire AGM, CNRS-UMR 8088, Dépt. de Mathématiques, 95302 Cergy-Pontoise Cédex, (France), University of Wisconsin, Department of Mathematics, Madison, WI 53706, (USA), Université d'Orléans, Laboratoire MAPMO, CNRS-UMR 6628, B.P. 6759, 45067 Orléans Cédex, (France)},
author = {Germinet, François, Kiselev, Alexander, Tcheremchantsev, Serguei},
journal = {Annales de l’institut Fourier},
keywords = {Schrödinger operators; transfer matrices; transport exponents},
language = {eng},
number = {3},
pages = {787-830},
publisher = {Association des Annales de l'Institut Fourier},
title = {Transfer matrices and transport for Schrödinger operators},
url = {http://eudml.org/doc/116127},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Germinet, François
AU - Kiselev, Alexander
AU - Tcheremchantsev, Serguei
TI - Transfer matrices and transport for Schrödinger operators
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 3
SP - 787
EP - 830
AB - We provide a general lower bound on the dynamics of one dimensional Schrödinger operators in terms of transfer matrices. In particular it yields a non trivial lower bound on the transport exponents as soon as the norm of transfer matrices does not grow faster than polynomially on a set of energies of full Lebesgue measure, and regardless of the nature of the spectrum. Applications to Hamiltonians with a) sparse, b) quasi-periodic, c) random decaying potential are provided. We also develop some general analysis of wave- packets that enables one to characterize transports exponents at low and large moments.
LA - eng
KW - Schrödinger operators; transfer matrices; transport exponents
UR - http://eudml.org/doc/116127
ER -

References

top
  1. J. M. Barbaroux, R. Montcho, Remarks on the relation between quantum dynamics and fractal spectra, J. Math. Anal. Appl 213 (1997), 698-722 Zbl0893.47048MR1470878
  2. J.-M. Barbaroux, F. Germinet, S. Tcheremchantsev, Fractal dimensions and the phenomenon of intermittency in quantum dynamics, Duke Math. J 110 (2001), 161-193 Zbl1012.81018MR1861091
  3. J.-M. Barbaroux, F. Germinet, S. Tcheremchantsev, Quantum diffusion and generalized fractal dimensions: the bad hbox case, Actes des journées EDP de Nantes (2000) 
  4. J.-M. Barbaroux, F. Germinet, S. Tcheremchantsev, Generalized fractal dimensions: equivalence and basic properties, J. Math. Pure et Appl 80 (2001), 977-1012 Zbl1050.28006MR1876760
  5. J. Bellissard, I. Guarneri, H. Schulz-Baldes, Phase-averaged transport for quasi-periodic Hamiltonians, Comm. Math. Phys 227 (2002), 515-539 Zbl1014.82021MR1910829
  6. J. Bellissard, H. Schulz-Baldes, Subdiffusive quantum transport for 3-D Hamiltonians with absolutely continuous spectra, J. Stat. Phys. 99 (2000), 587-594 Zbl0962.82030MR1762667
  7. J.-M. Bouclet, F. Germinet, A. Klein, Sub-exponential decay of operator kernels for functions of generalized Schrödinger operators Zbl1053.81028MR2054797
  8. R. Carmona, J. Lacroix, Spectral theory of random Schrödinger operators, (1990), Birkhaüser, Boston Zbl0717.60074MR1102675
  9. J.-M. Combes, Connection between quantum dynamics and spectral properties of time evolution operators, Differential Equations and Applications in Mathematical Physics (1993), 59-69, Academic Press Zbl0797.35136
  10. J.M. Combes, G. Mantica, Fractal Dimensions and Quantum Evolution Associated with Sparse Potential Jacobi Matrices, Long time behaviour of classical and quantum systems, (Bologna, 1999) 1 (2001), 107-123, World Sci. Publishing, River Edge, NJ Zbl0979.81035
  11. H. Cycon, R. Froese, W. Kirsch, B. Simon, Schrödinger Operators, (1987), Springer-Verlag Zbl0619.47005
  12. D. Damanik, S. Tcheremchantsev, Power-law bounds on transfer matrices and quantum dynamics in one dimension, Comm. Math. Phys 236 (2003), 513-534 Zbl1033.81032MR2021200
  13. E.B. Davies, Spectral Theory and Differential Operators, (1995), Cambridge University Press Zbl0893.47004MR1349825
  14. R. Del Rio, N. Makarov, B. Simon, Operators with singular continuous spectrum. II. Rank one operators, Comm. Math. Phys 165 (1994), 59-67 Zbl1055.47500MR1298942
  15. R. Del Rio, S. Jitomirskaya, Y. Last, B. Simon, What is localization?, Phys. Rev. Lett. 75 (1995), 117-119 
  16. R. Del Rio, S. Jitomirskaya, Y. Last, and B. Simon, Operators with singular continuous spectrum. IV. Hausdorff dimensions, rank one perturbations and localization, J. Anal. Math. 69 (1996), 153-200 Zbl0908.47002MR1428099
  17. F. Germinet, A. Klein, Decay of operator-valued kernels of functions of Schrödinger and other operators, Proc. Amer. Math. Soc 131 (2003), 911-920 Zbl1013.81009MR1937430
  18. F. Germinet, A. Klein, A characterization of the Anderson metal-insulator transport transition Zbl1062.82020MR2042531
  19. F. Germinet, A. Klein, The Anderson metal-insulator transport transition, Contemp. Math 339 (2003), 43-57 Zbl1130.82312MR2042531
  20. F. Germinet, S. Tcheremchantsev, Generalized fractal dimensions on the negative axis for compactly supported measures Zbl1178.28010
  21. D.J. Gilbert, D.B. Pearson, On subordinacy and analysis of the spectrum of one-dimensional Schrödinger operators, J. Math. Anal. Appl 128 (1987), 30-56 Zbl0666.34023MR915965
  22. I. Guarneri, Spectral properties of quantum diffusion on discrete lattices, Europhys. Lett 10 (1989), 95-100 
  23. I. Guarneri, H. Schulz-Baldes, Lower bounds on wave packet propagation by packing dimensions of spectral measures, Math. Phys. Elec. J 5 (1999) Zbl0910.47059MR1663518
  24. I. Guarneri, H. Schulz-Baldes, Intermittent lower bound on quantum diffusion, Lett. Math. Phys 49 (1999), 317-324 Zbl1001.81019MR1749574
  25. B. Helffer, J. Sjöstrand, Equation de Schrödinger avec champ magnétique et équation de Harper in Schrödinger Operators, 345 (1989), 118-197, Springer-Verlag Zbl0699.35189
  26. S. Jitomirskaya, H. Schulz-Baldes, G. Stolz, Delocalization in polymer models, Comm. Math. Phys 233 (2003), 27-48 Zbl1013.82027MR1957731
  27. S. Jitomirskaya, Y. Last, Power-law subordinacy and singular spectra. I. Half-line operators, Acta Math 183 (1999), 171-189 Zbl0991.81021MR1738043
  28. A. Kiselev, Y. Last, Solutions, spectrum, and dynamics for Schrödinger operators on infinite domains, Duke Math. J. 102 (2000), 125-150 Zbl0951.35033MR1741780
  29. A. Kiselev, Y. Last, B. Simon, Modified Prüfer and EFGP Transforms and the Spectral Analysis of One-Dimensional Schrödinger Operators, Commun. Math. Phys 194 (1997), 1-45 Zbl0912.34074MR1628290
  30. A. Koines, A. Klein, M. Seifert, Generalized Eigenfunctions for Waves in Inhomogeneous Media, J. Funct. Anal 190 (2002), 255-291 Zbl1043.35097MR1895534
  31. D. Krutikov, C. Remling, Schrödinger operators with sparse potentials: asymptotics of the Fourier transform of the spectral measure, Comm. Math. Phys (2001), 509-532 Zbl1161.81378MR1866165
  32. Y. Last, Quantum dynamics and decomposition of singular continuous spectrum, J. Funct. Anal 142 (1996), 406-445 Zbl0905.47059MR1423040
  33. Y. Last, B. Simon, Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators, Invent. Math. 135 (1999), 329-367 Zbl0931.34066MR1666767
  34. G. Mantica, Quantum intermittency in almost periodic systems derived from their spectral properties, Physica D 103 (1997), 576-589 Zbl1194.81085
  35. L. Pastur, A. Figotin, Spectra of Random and Almost-Periodic Operators, (1992), Springer-Verlag, Heidelberg Zbl0752.47002MR1223779
  36. D. Pearson, Singular continuous measures in scattering theory, Comm. Math. Phys 60 (1978), 13-36 Zbl0451.47013MR484145
  37. Pesin, Dimension Theory in Dynamical Systems: Contemporary Views and Applications, (1996), Univ. Chicago Press Zbl0895.58033MR1489237
  38. H. Schulz-Baldes, J. Bellissard, Anomalous transport: a mathematical framework, Rev. Math. Phys 10 (1998), 1-46 Zbl0908.47066MR1606847
  39. B. Simon, Bounded eigenfunctions and absolutely continuous spectra for one-dimensional Schrödinger operators, Proc. AMS 124 (1996), 3361-3369 Zbl0944.34064MR1350963
  40. B. Simon, Spectral Analysis and rank one perturbations and applications, 8 (1995), 109-149, Amer. Math. Soc., Providence, RI Zbl0824.47019
  41. B. Simon, T. Spencer, Trace class perturbations and the absence of absolutely continuous spectra, Comm. Math. Phys 125 (1989), 113-125 Zbl0684.47010MR1017742
  42. B. Simon, G. Stolz, Operators with singular continuous spectrum. V. Sparse potentials, Proc. Amer. Math. Soc 124 (1996), 2073-2080 Zbl0979.34063MR1342046
  43. S. Tcheremchantsev, Mixed lower bounds in quantum dynamics, J. Funct. Anal 197 (2003), 247-282 Zbl1060.47070MR1957683
  44. S. Tcheremchantsev, Dynamical analysis of Schrödinger operators with growing sparse potentials Zbl1100.47027MR2105642
  45. E.C. Titchmarsh, Eigenfunction Expansions, (1962), Oxford University Press, Oxford Zbl0099.05201MR176151
  46. J. Weidmann, Spectral Theory of Ordinary Differential Operators, 1258 (1987), Springer-Verlag Zbl0647.47052MR923320
  47. A. Zlatos, Sparse potentials with fractional Hausdorff dimension Zbl1038.47026MR2027640
  48. I. Guarneri, On an estimate concerning quantum diffusion in the presence of a fractal spectrum, Europhys. Lett. 21 (1993), 729-733 
  49. G. Mantica, Wave propagation in almost-periodic structures, Physica D 109 (1997), 113-127 Zbl0925.58041

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.