Transfer matrices and transport for Schrödinger operators
François Germinet[1]; Alexander Kiselev; Serguei Tcheremchantsev
- [1] Université de Cergy-Pontoise, laboratoire AGM, CNRS-UMR 8088, Dépt. de Mathématiques, 95302 Cergy-Pontoise Cédex, (France), University of Wisconsin, Department of Mathematics, Madison, WI 53706, (USA), Université d'Orléans, Laboratoire MAPMO, CNRS-UMR 6628, B.P. 6759, 45067 Orléans Cédex, (France)
Annales de l’institut Fourier (2004)
- Volume: 54, Issue: 3, page 787-830
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGerminet, François, Kiselev, Alexander, and Tcheremchantsev, Serguei. "Transfer matrices and transport for Schrödinger operators." Annales de l’institut Fourier 54.3 (2004): 787-830. <http://eudml.org/doc/116127>.
@article{Germinet2004,
abstract = {We provide a general lower bound on the dynamics of one dimensional Schrödinger operators
in terms of transfer matrices. In particular it yields a non trivial lower bound on the
transport exponents as soon as the norm of transfer matrices does not grow faster than
polynomially on a set of energies of full Lebesgue measure, and regardless of the nature
of the spectrum. Applications to Hamiltonians with a) sparse, b) quasi-periodic, c)
random decaying potential are provided. We also develop some general analysis of wave-
packets that enables one to characterize transports exponents at low and large moments.},
affiliation = {Université de Cergy-Pontoise, laboratoire AGM, CNRS-UMR 8088, Dépt. de Mathématiques, 95302 Cergy-Pontoise Cédex, (France), University of Wisconsin, Department of Mathematics, Madison, WI 53706, (USA), Université d'Orléans, Laboratoire MAPMO, CNRS-UMR 6628, B.P. 6759, 45067 Orléans Cédex, (France)},
author = {Germinet, François, Kiselev, Alexander, Tcheremchantsev, Serguei},
journal = {Annales de l’institut Fourier},
keywords = {Schrödinger operators; transfer matrices; transport exponents},
language = {eng},
number = {3},
pages = {787-830},
publisher = {Association des Annales de l'Institut Fourier},
title = {Transfer matrices and transport for Schrödinger operators},
url = {http://eudml.org/doc/116127},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Germinet, François
AU - Kiselev, Alexander
AU - Tcheremchantsev, Serguei
TI - Transfer matrices and transport for Schrödinger operators
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 3
SP - 787
EP - 830
AB - We provide a general lower bound on the dynamics of one dimensional Schrödinger operators
in terms of transfer matrices. In particular it yields a non trivial lower bound on the
transport exponents as soon as the norm of transfer matrices does not grow faster than
polynomially on a set of energies of full Lebesgue measure, and regardless of the nature
of the spectrum. Applications to Hamiltonians with a) sparse, b) quasi-periodic, c)
random decaying potential are provided. We also develop some general analysis of wave-
packets that enables one to characterize transports exponents at low and large moments.
LA - eng
KW - Schrödinger operators; transfer matrices; transport exponents
UR - http://eudml.org/doc/116127
ER -
References
top- J. M. Barbaroux, R. Montcho, Remarks on the relation between quantum dynamics and fractal spectra, J. Math. Anal. Appl 213 (1997), 698-722 Zbl0893.47048MR1470878
- J.-M. Barbaroux, F. Germinet, S. Tcheremchantsev, Fractal dimensions and the phenomenon of intermittency in quantum dynamics, Duke Math. J 110 (2001), 161-193 Zbl1012.81018MR1861091
- J.-M. Barbaroux, F. Germinet, S. Tcheremchantsev, Quantum diffusion and generalized fractal dimensions: the case, Actes des journées EDP de Nantes (2000)
- J.-M. Barbaroux, F. Germinet, S. Tcheremchantsev, Generalized fractal dimensions: equivalence and basic properties, J. Math. Pure et Appl 80 (2001), 977-1012 Zbl1050.28006MR1876760
- J. Bellissard, I. Guarneri, H. Schulz-Baldes, Phase-averaged transport for quasi-periodic Hamiltonians, Comm. Math. Phys 227 (2002), 515-539 Zbl1014.82021MR1910829
- J. Bellissard, H. Schulz-Baldes, Subdiffusive quantum transport for 3-D Hamiltonians with absolutely continuous spectra, J. Stat. Phys. 99 (2000), 587-594 Zbl0962.82030MR1762667
- J.-M. Bouclet, F. Germinet, A. Klein, Sub-exponential decay of operator kernels for functions of generalized Schrödinger operators Zbl1053.81028MR2054797
- R. Carmona, J. Lacroix, Spectral theory of random Schrödinger operators, (1990), Birkhaüser, Boston Zbl0717.60074MR1102675
- J.-M. Combes, Connection between quantum dynamics and spectral properties of time evolution operators, Differential Equations and Applications in Mathematical Physics (1993), 59-69, Academic Press Zbl0797.35136
- J.M. Combes, G. Mantica, Fractal Dimensions and Quantum Evolution Associated with Sparse Potential Jacobi Matrices, Long time behaviour of classical and quantum systems, (Bologna, 1999) 1 (2001), 107-123, World Sci. Publishing, River Edge, NJ Zbl0979.81035
- H. Cycon, R. Froese, W. Kirsch, B. Simon, Schrödinger Operators, (1987), Springer-Verlag Zbl0619.47005
- D. Damanik, S. Tcheremchantsev, Power-law bounds on transfer matrices and quantum dynamics in one dimension, Comm. Math. Phys 236 (2003), 513-534 Zbl1033.81032MR2021200
- E.B. Davies, Spectral Theory and Differential Operators, (1995), Cambridge University Press Zbl0893.47004MR1349825
- R. Del Rio, N. Makarov, B. Simon, Operators with singular continuous spectrum. II. Rank one operators, Comm. Math. Phys 165 (1994), 59-67 Zbl1055.47500MR1298942
- R. Del Rio, S. Jitomirskaya, Y. Last, B. Simon, What is localization?, Phys. Rev. Lett. 75 (1995), 117-119
- R. Del Rio, S. Jitomirskaya, Y. Last, and B. Simon, Operators with singular continuous spectrum. IV. Hausdorff dimensions, rank one perturbations and localization, J. Anal. Math. 69 (1996), 153-200 Zbl0908.47002MR1428099
- F. Germinet, A. Klein, Decay of operator-valued kernels of functions of Schrödinger and other operators, Proc. Amer. Math. Soc 131 (2003), 911-920 Zbl1013.81009MR1937430
- F. Germinet, A. Klein, A characterization of the Anderson metal-insulator transport transition Zbl1062.82020MR2042531
- F. Germinet, A. Klein, The Anderson metal-insulator transport transition, Contemp. Math 339 (2003), 43-57 Zbl1130.82312MR2042531
- F. Germinet, S. Tcheremchantsev, Generalized fractal dimensions on the negative axis for compactly supported measures Zbl1178.28010
- D.J. Gilbert, D.B. Pearson, On subordinacy and analysis of the spectrum of one-dimensional Schrödinger operators, J. Math. Anal. Appl 128 (1987), 30-56 Zbl0666.34023MR915965
- I. Guarneri, Spectral properties of quantum diffusion on discrete lattices, Europhys. Lett 10 (1989), 95-100
- I. Guarneri, H. Schulz-Baldes, Lower bounds on wave packet propagation by packing dimensions of spectral measures, Math. Phys. Elec. J 5 (1999) Zbl0910.47059MR1663518
- I. Guarneri, H. Schulz-Baldes, Intermittent lower bound on quantum diffusion, Lett. Math. Phys 49 (1999), 317-324 Zbl1001.81019MR1749574
- B. Helffer, J. Sjöstrand, Equation de Schrödinger avec champ magnétique et équation de Harper in Schrödinger Operators, 345 (1989), 118-197, Springer-Verlag Zbl0699.35189
- S. Jitomirskaya, H. Schulz-Baldes, G. Stolz, Delocalization in polymer models, Comm. Math. Phys 233 (2003), 27-48 Zbl1013.82027MR1957731
- S. Jitomirskaya, Y. Last, Power-law subordinacy and singular spectra. I. Half-line operators, Acta Math 183 (1999), 171-189 Zbl0991.81021MR1738043
- A. Kiselev, Y. Last, Solutions, spectrum, and dynamics for Schrödinger operators on infinite domains, Duke Math. J. 102 (2000), 125-150 Zbl0951.35033MR1741780
- A. Kiselev, Y. Last, B. Simon, Modified Prüfer and EFGP Transforms and the Spectral Analysis of One-Dimensional Schrödinger Operators, Commun. Math. Phys 194 (1997), 1-45 Zbl0912.34074MR1628290
- A. Koines, A. Klein, M. Seifert, Generalized Eigenfunctions for Waves in Inhomogeneous Media, J. Funct. Anal 190 (2002), 255-291 Zbl1043.35097MR1895534
- D. Krutikov, C. Remling, Schrödinger operators with sparse potentials: asymptotics of the Fourier transform of the spectral measure, Comm. Math. Phys (2001), 509-532 Zbl1161.81378MR1866165
- Y. Last, Quantum dynamics and decomposition of singular continuous spectrum, J. Funct. Anal 142 (1996), 406-445 Zbl0905.47059MR1423040
- Y. Last, B. Simon, Eigenfunctions, transfer matrices, and absolutely continuous spectrum of one-dimensional Schrödinger operators, Invent. Math. 135 (1999), 329-367 Zbl0931.34066MR1666767
- G. Mantica, Quantum intermittency in almost periodic systems derived from their spectral properties, Physica D 103 (1997), 576-589 Zbl1194.81085
- L. Pastur, A. Figotin, Spectra of Random and Almost-Periodic Operators, (1992), Springer-Verlag, Heidelberg Zbl0752.47002MR1223779
- D. Pearson, Singular continuous measures in scattering theory, Comm. Math. Phys 60 (1978), 13-36 Zbl0451.47013MR484145
- Pesin, Dimension Theory in Dynamical Systems: Contemporary Views and Applications, (1996), Univ. Chicago Press Zbl0895.58033MR1489237
- H. Schulz-Baldes, J. Bellissard, Anomalous transport: a mathematical framework, Rev. Math. Phys 10 (1998), 1-46 Zbl0908.47066MR1606847
- B. Simon, Bounded eigenfunctions and absolutely continuous spectra for one-dimensional Schrödinger operators, Proc. AMS 124 (1996), 3361-3369 Zbl0944.34064MR1350963
- B. Simon, Spectral Analysis and rank one perturbations and applications, 8 (1995), 109-149, Amer. Math. Soc., Providence, RI Zbl0824.47019
- B. Simon, T. Spencer, Trace class perturbations and the absence of absolutely continuous spectra, Comm. Math. Phys 125 (1989), 113-125 Zbl0684.47010MR1017742
- B. Simon, G. Stolz, Operators with singular continuous spectrum. V. Sparse potentials, Proc. Amer. Math. Soc 124 (1996), 2073-2080 Zbl0979.34063MR1342046
- S. Tcheremchantsev, Mixed lower bounds in quantum dynamics, J. Funct. Anal 197 (2003), 247-282 Zbl1060.47070MR1957683
- S. Tcheremchantsev, Dynamical analysis of Schrödinger operators with growing sparse potentials Zbl1100.47027MR2105642
- E.C. Titchmarsh, Eigenfunction Expansions, (1962), Oxford University Press, Oxford Zbl0099.05201MR176151
- J. Weidmann, Spectral Theory of Ordinary Differential Operators, 1258 (1987), Springer-Verlag Zbl0647.47052MR923320
- A. Zlatos, Sparse potentials with fractional Hausdorff dimension Zbl1038.47026MR2027640
- I. Guarneri, On an estimate concerning quantum diffusion in the presence of a fractal spectrum, Europhys. Lett. 21 (1993), 729-733
- G. Mantica, Wave propagation in almost-periodic structures, Physica D 109 (1997), 113-127 Zbl0925.58041
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.