Asymptotics of eigensections on toric varieties

A. Huckleberry[1]; H. Sebert[1]

  • [1] Fakulät und Institut für Mathematik Ruhr Universität Bochum Universitätsstrasse 150 D-44780 Bochum, Germany

Annales de l’institut Fourier (2013)

  • Volume: 63, Issue: 2, page 733-762
  • ISSN: 0373-0956

Abstract

top
Using exhaustion properties of invariant plurisubharmonic functions along with basic combinatorial information on toric varieties, we prove convergence results for sequences of densities | ϕ n | 2 = | s N | 2 / | | s N | | L 2 2 for eigensections s N Γ ( X , L N ) approaching a semiclassical ray. Here X is a normal compact toric variety and L is an ample line bundle equipped with an arbitrary positive bundle metric which is invariant with respect to the compact form of the torus. Our work was motivated by and extends that of Shiffman, Tate and Zelditch.

How to cite

top

Huckleberry, A., and Sebert, H.. "Asymptotics of eigensections on toric varieties." Annales de l’institut Fourier 63.2 (2013): 733-762. <http://eudml.org/doc/275464>.

@article{Huckleberry2013,
abstract = {Using exhaustion properties of invariant plurisubharmonic functions along with basic combinatorial information on toric varieties, we prove convergence results for sequences of densities $| \varphi _n| ^2=| s_N| ^2 / || s_N||_\{L^2\}^2$ for eigensections $s_N\in \Gamma (X,L^N)$ approaching a semiclassical ray. Here $X$ is a normal compact toric variety and $L$ is an ample line bundle equipped with an arbitrary positive bundle metric which is invariant with respect to the compact form of the torus. Our work was motivated by and extends that of Shiffman, Tate and Zelditch.},
affiliation = {Fakulät und Institut für Mathematik Ruhr Universität Bochum Universitätsstrasse 150 D-44780 Bochum, Germany; Fakulät und Institut für Mathematik Ruhr Universität Bochum Universitätsstrasse 150 D-44780 Bochum, Germany; Institut Elie Cartan UMR 7502 Université de Lorraine, CNRS, INRIA et Universitaire de France, BP 239-F-54566, Vandoeuvre-lès-Nancy Cedex.France},
author = {Huckleberry, A., Sebert, H.},
journal = {Annales de l’institut Fourier},
keywords = {asymptotics of eigensections; toric varieties; plurisubharmonic; plurisubharmonic function},
language = {eng},
number = {2},
pages = {733-762},
publisher = {Association des Annales de l’institut Fourier},
title = {Asymptotics of eigensections on toric varieties},
url = {http://eudml.org/doc/275464},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Huckleberry, A.
AU - Sebert, H.
TI - Asymptotics of eigensections on toric varieties
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 2
SP - 733
EP - 762
AB - Using exhaustion properties of invariant plurisubharmonic functions along with basic combinatorial information on toric varieties, we prove convergence results for sequences of densities $| \varphi _n| ^2=| s_N| ^2 / || s_N||_{L^2}^2$ for eigensections $s_N\in \Gamma (X,L^N)$ approaching a semiclassical ray. Here $X$ is a normal compact toric variety and $L$ is an ample line bundle equipped with an arbitrary positive bundle metric which is invariant with respect to the compact form of the torus. Our work was motivated by and extends that of Shiffman, Tate and Zelditch.
LA - eng
KW - asymptotics of eigensections; toric varieties; plurisubharmonic; plurisubharmonic function
UR - http://eudml.org/doc/275464
ER -

References

top
  1. V. Arnold, A. Varchenko, S. Goussein-Zadé, Singularités des applications différentiables, 2 (monodromie et comportement asymptotique des intégrales) (1986), Edition Mir 
  2. D. Barlet, Singularités réelles isolées et développements asymptotiques d’intégrales oscillantes, (2004), 25-50, Seminaires et SMF Zbl1080.32028
  3. D. Burns, V. Guillemin, Z. Wong, Stability Functions, Geom. Funct. Anal. 19 (2010), 1258-1295 Zbl1186.53101MR2585574
  4. W. Fulton, Introduction to Toric Varieties, (1983), Princeton Univ. Press, Princeton Zbl0813.14039MR1234037
  5. P. Heinzner, Geometric invariant theory on Stein spaces, Math. Ann. 289 (1991), 631-662 Zbl0728.32010MR1103041
  6. P. Heinzner, A. Huckleberry, Manuscripta Math., Math. Ann. 83 (1994), 19-29 Zbl0842.32010MR1265915
  7. P. Heinzner, A. Huckleberry, Analytic Hilbert Quotients, Several Complex Variables 37 (1999), 309-349, Cambridge University Press Zbl0959.32013MR1748608
  8. L. Hörmander, The Analysis of Linear Partial Differential Operators, I, (1990), Springer Verlag, New York Zbl0712.35001MR1065136
  9. P. Jeanquartier, Développement asymptotique de la distribution de Dirac, C.r. Acad. Sci. Paris 271 (1970), 1159-1161 Zbl0201.16502MR420695
  10. X. Ma, W. Zhang, Bergman kernels and Symplectic reduction, 318 Zbl1171.32001MR2473876
  11. A. Neeman, The topology of quotient varieties, Ann. of Math. (2) 122 (1985), 419-459 Zbl0692.14032MR819554
  12. H. Sebert, Semiclassical limits of Kählerian potentials on toric varieties 
  13. B. Shiffman, T. Tate, S. Zelditch, Distribution laws for integrable eigenfunctions, Ann. Inst. Fourier 54 (2004), 1497-1546 Zbl1081.35063MR2127856
  14. J. Song, S. Zelditch, Bergman metrics and geodesics in the space of Kähler metrics on toric varieties, Analysis & PDE 3 (2010), 295-358 Zbl1282.35428MR2672796

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.