Introduction to magnetic resonance imaging for mathematicians

Charles L. Epstein[1]

  • [1] University of Pennsylvania, Department of Mathematics, Philadelphia (USA)

Annales de l’institut Fourier (2004)

  • Volume: 54, Issue: 5, page 1697-1716
  • ISSN: 0373-0956

Abstract

top
The basic concepts and models used in the study of nuclear magnetic resonance are introduced. A simple imaging experiment is described, as well as, the reduction of the problem of selective excitation to a classical problem in inverse scattering.

How to cite

top

Epstein, Charles L.. "Introduction to magnetic resonance imaging for mathematicians." Annales de l’institut Fourier 54.5 (2004): 1697-1716. <http://eudml.org/doc/116156>.

@article{Epstein2004,
abstract = {The basic concepts and models used in the study of nuclear magnetic resonance are introduced. A simple imaging experiment is described, as well as, the reduction of the problem of selective excitation to a classical problem in inverse scattering.},
affiliation = {University of Pennsylvania, Department of Mathematics, Philadelphia (USA)},
author = {Epstein, Charles L.},
journal = {Annales de l’institut Fourier},
keywords = {nuclear magnetic resonance; imaging; selective excitation; inverse scattering},
language = {eng},
number = {5},
pages = {1697-1716},
publisher = {Association des Annales de l'Institut Fourier},
title = {Introduction to magnetic resonance imaging for mathematicians},
url = {http://eudml.org/doc/116156},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Epstein, Charles L.
TI - Introduction to magnetic resonance imaging for mathematicians
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 5
SP - 1697
EP - 1716
AB - The basic concepts and models used in the study of nuclear magnetic resonance are introduced. A simple imaging experiment is described, as well as, the reduction of the problem of selective excitation to a classical problem in inverse scattering.
LA - eng
KW - nuclear magnetic resonance; imaging; selective excitation; inverse scattering
UR - http://eudml.org/doc/116156
ER -

References

top
  1. M. Ablowitz, D. Kaup, A. Newell, H. Segur, The inverse scattering transform-Fourier analysis for nonlinear problems, Studies Appl. Math. 53 (1974), 249-315 Zbl0408.35068MR450815
  2. A. Abragam, Principles of Nuclear Magnetism, (1983), Clarendon Press, Oxford 
  3. R. Beals, R. Coifman, Scattering and inverse scattering for first order systems, CPAM 37 (1984), 39-90 Zbl0514.34021MR728266
  4. F. Bloch, Nuclear induction, Phys. Review 70 (1946), 460-474 
  5. P.T. Callaghan, Principles of nuclear magnetic resonance microscopy, (1993), Clarendon Press, Oxford 
  6. J. Carlson, Exact solutions for selective-excitation pulses, J. Magn. Res. 94 (1991), 376-386 
  7. J. Carlson, Exact solutions for selective-excitation pulses. II. Excitation pulses with phase control, J. Magn. Res. 97 (1992), 65-78 
  8. C.L. Epstein, Minimum power pulse synthesis via the inverse scattering transform, J. Magn. Res. 167 (2004), 185-210 
  9. R. Ernst, G. Bodenhausen, A. Wokaun, Principles of nuclear magnetic resonance in one and two dimensions, (1987), Clarendon, Oxford 
  10. L. Faddeev, L. Takhtajan, Hamiltonian Methods in the Theory of Solitons, (1987), Springer Verlag, Berlin, Heidelberg, New York Zbl0632.58004MR905674
  11. F. Grünbaum, Trying to beat Heisenberg, Analysis and Partial Differential Equations. A Collection of Papers Dedicated to Mischa Cotlar vol. 122 (1989), 657-666, Marcel Dekker Zbl0702.35199
  12. F. Grünbaum, Concentrating a potential and its scattering transform for a discrete version of the Schrödinger and Zakharov-Shabat operators, Physica D 44 (1990), 92-98 Zbl0703.58053MR1069673
  13. F. Grünbaum, A. Hasenfeld, An exploration of the invertibility of the Bloch transform, Inverse Problems 2 (1986), 75-81 Zbl0612.44005MR839981
  14. E.M. Haacke, R.W. Brown, M.R. Thompson, R. Venkatesan, Magnetic Resonance Imaging, (1999), Wiley-Liss, New York 
  15. D. Hoult, The principle of reciprocity in signal strength calculations - A mathematical guide, Concepts Magn. Res. 12 (2000), 173-187 
  16. D. Hoult, Sensitivity and power deposition in a high field imaging experiment, JMRI 12 (2000), 46-67 
  17. J. Magland, Discrete Inverse Scattering Theory and NMR pulse design, (2004) 
  18. E. Merzbacher, Quantum Mechanics, (1970), John Wiler & Sons, New York Zbl0102.42701MR260284
  19. J. Pauly, P. Le Roux, D. Nishimura, A. Macovski, Parameter relations for the Shinnar-Le Roux selective excitation pulse design algorithm, IEEE Trans. Med. Imaging 10 (1991), 53-65 
  20. D.E. Rourke, P.G. Morris, The inverse scattering transform and its use in the exact inversion of the Bloch equation for noninteracting spins, J. Magn. Res. 99 (1992), 118-138 
  21. M. Shinnar, J. Leigh, The application of spinors to pulse synthesis and analysis, Magn. Res. in Med. 12 (1989), 93-98 
  22. M. Shinnar, J. Leigh, Inversion of the Bloch equation, J. Chem. Phys. 98 (1993), 6121-6128 
  23. H.C. Torrey, Bloch equations with diffusion terms, Phys. Review 104 (1956), 563-565 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.