Introduction to magnetic resonance imaging for mathematicians
- [1] University of Pennsylvania, Department of Mathematics, Philadelphia (USA)
Annales de l’institut Fourier (2004)
- Volume: 54, Issue: 5, page 1697-1716
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topEpstein, Charles L.. "Introduction to magnetic resonance imaging for mathematicians." Annales de l’institut Fourier 54.5 (2004): 1697-1716. <http://eudml.org/doc/116156>.
@article{Epstein2004,
abstract = {The basic concepts and models used in the study of nuclear magnetic resonance are
introduced. A simple imaging experiment is described, as well as, the reduction of the
problem of selective excitation to a classical problem in inverse scattering.},
affiliation = {University of Pennsylvania, Department of Mathematics, Philadelphia (USA)},
author = {Epstein, Charles L.},
journal = {Annales de l’institut Fourier},
keywords = {nuclear magnetic resonance; imaging; selective excitation; inverse scattering},
language = {eng},
number = {5},
pages = {1697-1716},
publisher = {Association des Annales de l'Institut Fourier},
title = {Introduction to magnetic resonance imaging for mathematicians},
url = {http://eudml.org/doc/116156},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Epstein, Charles L.
TI - Introduction to magnetic resonance imaging for mathematicians
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 5
SP - 1697
EP - 1716
AB - The basic concepts and models used in the study of nuclear magnetic resonance are
introduced. A simple imaging experiment is described, as well as, the reduction of the
problem of selective excitation to a classical problem in inverse scattering.
LA - eng
KW - nuclear magnetic resonance; imaging; selective excitation; inverse scattering
UR - http://eudml.org/doc/116156
ER -
References
top- M. Ablowitz, D. Kaup, A. Newell, H. Segur, The inverse scattering transform-Fourier analysis for nonlinear problems, Studies Appl. Math. 53 (1974), 249-315 Zbl0408.35068MR450815
- A. Abragam, Principles of Nuclear Magnetism, (1983), Clarendon Press, Oxford
- R. Beals, R. Coifman, Scattering and inverse scattering for first order systems, CPAM 37 (1984), 39-90 Zbl0514.34021MR728266
- F. Bloch, Nuclear induction, Phys. Review 70 (1946), 460-474
- P.T. Callaghan, Principles of nuclear magnetic resonance microscopy, (1993), Clarendon Press, Oxford
- J. Carlson, Exact solutions for selective-excitation pulses, J. Magn. Res. 94 (1991), 376-386
- J. Carlson, Exact solutions for selective-excitation pulses. II. Excitation pulses with phase control, J. Magn. Res. 97 (1992), 65-78
- C.L. Epstein, Minimum power pulse synthesis via the inverse scattering transform, J. Magn. Res. 167 (2004), 185-210
- R. Ernst, G. Bodenhausen, A. Wokaun, Principles of nuclear magnetic resonance in one and two dimensions, (1987), Clarendon, Oxford
- L. Faddeev, L. Takhtajan, Hamiltonian Methods in the Theory of Solitons, (1987), Springer Verlag, Berlin, Heidelberg, New York Zbl0632.58004MR905674
- F. Grünbaum, Trying to beat Heisenberg, Analysis and Partial Differential Equations. A Collection of Papers Dedicated to Mischa Cotlar vol. 122 (1989), 657-666, Marcel Dekker Zbl0702.35199
- F. Grünbaum, Concentrating a potential and its scattering transform for a discrete version of the Schrödinger and Zakharov-Shabat operators, Physica D 44 (1990), 92-98 Zbl0703.58053MR1069673
- F. Grünbaum, A. Hasenfeld, An exploration of the invertibility of the Bloch transform, Inverse Problems 2 (1986), 75-81 Zbl0612.44005MR839981
- E.M. Haacke, R.W. Brown, M.R. Thompson, R. Venkatesan, Magnetic Resonance Imaging, (1999), Wiley-Liss, New York
- D. Hoult, The principle of reciprocity in signal strength calculations - A mathematical guide, Concepts Magn. Res. 12 (2000), 173-187
- D. Hoult, Sensitivity and power deposition in a high field imaging experiment, JMRI 12 (2000), 46-67
- J. Magland, Discrete Inverse Scattering Theory and NMR pulse design, (2004)
- E. Merzbacher, Quantum Mechanics, (1970), John Wiler & Sons, New York Zbl0102.42701MR260284
- J. Pauly, P. Le Roux, D. Nishimura, A. Macovski, Parameter relations for the Shinnar-Le Roux selective excitation pulse design algorithm, IEEE Trans. Med. Imaging 10 (1991), 53-65
- D.E. Rourke, P.G. Morris, The inverse scattering transform and its use in the exact inversion of the Bloch equation for noninteracting spins, J. Magn. Res. 99 (1992), 118-138
- M. Shinnar, J. Leigh, The application of spinors to pulse synthesis and analysis, Magn. Res. in Med. 12 (1989), 93-98
- M. Shinnar, J. Leigh, Inversion of the Bloch equation, J. Chem. Phys. 98 (1993), 6121-6128
- H.C. Torrey, Bloch equations with diffusion terms, Phys. Review 104 (1956), 563-565
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.