The search session has expired. Please query the service again.
The method of choice for describing attractive quantum systems is Hartree−Fock−Bogoliubov (HFB) theory. This is a nonlinear model which allows for the description of pairing effects, the main explanation for the superconductivity of certain materials at very low temperature. This paper is the first study of Hartree−Fock−Bogoliubov theory from the point of view of numerical analysis. We start by discussing its proper discretization and then analyze the convergence of the simple fixed point (Roothaan)...
The basic concepts and models used in the study of nuclear magnetic resonance are
introduced. A simple imaging experiment is described, as well as, the reduction of the
problem of selective excitation to a classical problem in inverse scattering.
We find the limit distributions for a spectrum of a system of n particles governed by a k-body interaction. The hamiltonian of this system is modelled by a Gaussian random matrix. We show that the limit distribution is a q-deformed Gaussian distribution with the deformation parameter q depending on the fraction k/√n. The family of q-deformed Gaussian distributions include the Gaussian distribution and the semicircular law; therefore our result is a generalization of the results of Wigner [Wig1,...
We consider an effective model of nuclear matter including spin and isospin degrees of freedom, described by an -body Hamiltonian with suitably renormalized two-body and three-body interaction potentials. We show that the corresponding mean-field theory (the time-dependent Hartree-Fock approximation) is “exact” as tends to infinity.
Currently displaying 1 –
10 of
10