On the Faraut-Koranyi hypergeometric functions in rank two

Miroslav Engliš[1]; Genkai Zhang

  • [1] Academy of Sciences, Mathematics Institute, Zitna 25, 11567 Prague 1 (Czech Republic), Göteborgs Universitet, Chalmers tekniska högskola, 41296 Göteborg (Sweden)

Annales de l’institut Fourier (2004)

  • Volume: 54, Issue: 6, page 1855-1875
  • ISSN: 0373-0956

Abstract

top
We give a complete description of the boundary behaviour of the generalized hypergeometric functions, introduced by Faraut and Koranyi, on Cartan domains of rank 2. The main tool is a new integral representation for some spherical polynomials, which may be of independent interest.

How to cite

top

Engliš, Miroslav, and Zhang, Genkai. "On the Faraut-Koranyi hypergeometric functions in rank two." Annales de l’institut Fourier 54.6 (2004): 1855-1875. <http://eudml.org/doc/116162>.

@article{Engliš2004,
abstract = {We give a complete description of the boundary behaviour of the generalized hypergeometric functions, introduced by Faraut and Koranyi, on Cartan domains of rank 2. The main tool is a new integral representation for some spherical polynomials, which may be of independent interest.},
affiliation = {Academy of Sciences, Mathematics Institute, Zitna 25, 11567 Prague 1 (Czech Republic), Göteborgs Universitet, Chalmers tekniska högskola, 41296 Göteborg (Sweden)},
author = {Engliš, Miroslav, Zhang, Genkai},
journal = {Annales de l’institut Fourier},
keywords = {Cartan domain; hypergeometric function; partition; spherical polynomial; Jack polynomial; hypergeometric functions; Jack polynomials; integral representation},
language = {eng},
number = {6},
pages = {1855-1875},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the Faraut-Koranyi hypergeometric functions in rank two},
url = {http://eudml.org/doc/116162},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Engliš, Miroslav
AU - Zhang, Genkai
TI - On the Faraut-Koranyi hypergeometric functions in rank two
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 6
SP - 1855
EP - 1875
AB - We give a complete description of the boundary behaviour of the generalized hypergeometric functions, introduced by Faraut and Koranyi, on Cartan domains of rank 2. The main tool is a new integral representation for some spherical polynomials, which may be of independent interest.
LA - eng
KW - Cartan domain; hypergeometric function; partition; spherical polynomial; Jack polynomial; hypergeometric functions; Jack polynomials; integral representation
UR - http://eudml.org/doc/116162
ER -

References

top
  1. J. Arazy, A survey of invariant Hilbert spaces of analytic functions on bounded symmetric domains, Multivariable operator theory vol. 185 (1995), 7-65, Amer. Math. Soc., Providence Zbl0831.46014
  2. H. Bateman, A. Erdélyi, Higher transcendental functions, vol. I (1953), McGraw-Hill, New York -- Toronto -- London Zbl0143.29202MR58756
  3. R.R. Coifman, R. Rochberg, Representation theorems for Hardy spaces, Asterisque 77 (1980), 11-66 Zbl0472.46040MR604369
  4. M. Engliš, Compact Toeplitz operators via the Berezin transform on bounded symmetric domains, Integral Eq. Oper. Theory 33 (1999), 426-455 Zbl0936.47014MR1682815
  5. J. Faraut, A. Koranyi, Function spaces and reproducing kernels on bounded symmetric domains, J. Funct. Anal 88 (1990), 64-89 Zbl0718.32026MR1033914
  6. S. Helgason, Groups and geometric analysis, (1984), Academic Press, Orlando Zbl0543.58001MR754767
  7. O. Loos, Bounded symmetric domains and Jordan pairs, (1977), Irvine, University of California 
  8. I.G. MacDonald, Symmetric functions and Hall polynomials, (1995), Clarendon Press, Oxford Zbl0824.05059MR1354144
  9. P. Sawyer, Spherical functions on symmetric cones, Trans. Amer. Math. Soc 349 (1997), 3569-3584 Zbl0881.33011MR1325919
  10. N. Shimeno, Boundary value problems for the Shilov boundary of a bounded symmetric domain of tube type, J. Funct. Anal 140 (1996), 124-141 Zbl0857.43008MR1404577
  11. H. Upmeier, Toeplitz operators on bounded symmetric domains, Trans. Amer. Math. Soc 280 (1983), 221-237 Zbl0527.47019MR712257
  12. Z. Yan, A class of generalized hypergeometric functions in several variables, Canad. J. Math 44 (1992), 1317-1338 Zbl0769.33014MR1192421
  13. K. Zhu, Holomorphic Besov spaces on bounded symmetric domains, Quart. J. Math. Oxford 46 (1995), 239-256 Zbl0837.32013MR1333834
  14. M. Engliš, Compact Toeplitz operators via the Berezin transform on bounded symmetric domains, Integral Eq. Oper. Theory (Erratum Ibid) 34 (1999), 500-501 Zbl0936.47014MR1702236

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.