On the Faraut-Koranyi hypergeometric functions in rank two
Miroslav Engliš[1]; Genkai Zhang
- [1] Academy of Sciences, Mathematics Institute, Zitna 25, 11567 Prague 1 (Czech Republic), Göteborgs Universitet, Chalmers tekniska högskola, 41296 Göteborg (Sweden)
Annales de l’institut Fourier (2004)
- Volume: 54, Issue: 6, page 1855-1875
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topEngliš, Miroslav, and Zhang, Genkai. "On the Faraut-Koranyi hypergeometric functions in rank two." Annales de l’institut Fourier 54.6 (2004): 1855-1875. <http://eudml.org/doc/116162>.
@article{Engliš2004,
abstract = {We give a complete description of the boundary behaviour of the generalized
hypergeometric functions, introduced by Faraut and Koranyi, on Cartan domains of rank 2.
The main tool is a new integral representation for some spherical polynomials, which may
be of independent interest.},
affiliation = {Academy of Sciences, Mathematics Institute, Zitna 25, 11567 Prague 1 (Czech Republic), Göteborgs Universitet, Chalmers tekniska högskola, 41296 Göteborg (Sweden)},
author = {Engliš, Miroslav, Zhang, Genkai},
journal = {Annales de l’institut Fourier},
keywords = {Cartan domain; hypergeometric function; partition; spherical polynomial; Jack polynomial; hypergeometric functions; Jack polynomials; integral representation},
language = {eng},
number = {6},
pages = {1855-1875},
publisher = {Association des Annales de l'Institut Fourier},
title = {On the Faraut-Koranyi hypergeometric functions in rank two},
url = {http://eudml.org/doc/116162},
volume = {54},
year = {2004},
}
TY - JOUR
AU - Engliš, Miroslav
AU - Zhang, Genkai
TI - On the Faraut-Koranyi hypergeometric functions in rank two
JO - Annales de l’institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 6
SP - 1855
EP - 1875
AB - We give a complete description of the boundary behaviour of the generalized
hypergeometric functions, introduced by Faraut and Koranyi, on Cartan domains of rank 2.
The main tool is a new integral representation for some spherical polynomials, which may
be of independent interest.
LA - eng
KW - Cartan domain; hypergeometric function; partition; spherical polynomial; Jack polynomial; hypergeometric functions; Jack polynomials; integral representation
UR - http://eudml.org/doc/116162
ER -
References
top- J. Arazy, A survey of invariant Hilbert spaces of analytic functions on bounded symmetric domains, Multivariable operator theory vol. 185 (1995), 7-65, Amer. Math. Soc., Providence Zbl0831.46014
- H. Bateman, A. Erdélyi, Higher transcendental functions, vol. I (1953), McGraw-Hill, New York -- Toronto -- London Zbl0143.29202MR58756
- R.R. Coifman, R. Rochberg, Representation theorems for Hardy spaces, Asterisque 77 (1980), 11-66 Zbl0472.46040MR604369
- M. Engliš, Compact Toeplitz operators via the Berezin transform on bounded symmetric domains, Integral Eq. Oper. Theory 33 (1999), 426-455 Zbl0936.47014MR1682815
- J. Faraut, A. Koranyi, Function spaces and reproducing kernels on bounded symmetric domains, J. Funct. Anal 88 (1990), 64-89 Zbl0718.32026MR1033914
- S. Helgason, Groups and geometric analysis, (1984), Academic Press, Orlando Zbl0543.58001MR754767
- O. Loos, Bounded symmetric domains and Jordan pairs, (1977), Irvine, University of California
- I.G. MacDonald, Symmetric functions and Hall polynomials, (1995), Clarendon Press, Oxford Zbl0824.05059MR1354144
- P. Sawyer, Spherical functions on symmetric cones, Trans. Amer. Math. Soc 349 (1997), 3569-3584 Zbl0881.33011MR1325919
- N. Shimeno, Boundary value problems for the Shilov boundary of a bounded symmetric domain of tube type, J. Funct. Anal 140 (1996), 124-141 Zbl0857.43008MR1404577
- H. Upmeier, Toeplitz operators on bounded symmetric domains, Trans. Amer. Math. Soc 280 (1983), 221-237 Zbl0527.47019MR712257
- Z. Yan, A class of generalized hypergeometric functions in several variables, Canad. J. Math 44 (1992), 1317-1338 Zbl0769.33014MR1192421
- K. Zhu, Holomorphic Besov spaces on bounded symmetric domains, Quart. J. Math. Oxford 46 (1995), 239-256 Zbl0837.32013MR1333834
- M. Engliš, Compact Toeplitz operators via the Berezin transform on bounded symmetric domains, Integral Eq. Oper. Theory (Erratum Ibid) 34 (1999), 500-501 Zbl0936.47014MR1702236
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.