A limit relation for Dunkl-Bessel functions of type A and B.
The method of brackets is a collection of heuristic rules, some of which have being made rigorous, that provide a flexible, direct method for the evaluation of definite integrals. The present work uses this method to establish classical formulas due to Frullani which provide values of a specific family of integrals. Some generalizations are established.
We give a complete description of the boundary behaviour of the generalized hypergeometric functions, introduced by Faraut and Koranyi, on Cartan domains of rank 2. The main tool is a new integral representation for some spherical polynomials, which may be of independent interest.