Explicit formulas for the Chern character in algebraic K -theory

Grégory Ginot[1]

  • [1] Université Paris 13, ENS Cachan, CMLA-LAGA, 61 avenue du Président Wilson, 94235 Cachan Cedex (France)

Annales de l'Institut Fourier (2004)

  • Volume: 54, Issue: 7, page 2327-2355
  • ISSN: 0373-0956

Abstract

top
In this paper we give an explicit formula for the Chern character from algebraic K - theory to negative cyclic homology. We compute formulas for the Chern character of Steinberg, Dennis-Stein and Loday symbols. From the previous results we get a new proof of the compatibility of the Chern character with products.

How to cite

top

Ginot, Grégory. "Formules explicites pour le caractère de Chern en $K$-théorie algébrique." Annales de l'Institut Fourier 54.7 (2004): 2327-2355. <http://eudml.org/doc/116174>.

@article{Ginot2004,
abstract = {Dans cet article on donne une formule explicite pour le caractère de Chern reliant la $K$- théorie algébrique et l’homologie cyclique négative. On calcule le caractère de Chern des symboles de Steinberg et de Loday et on donne une preuve élémentaire du fait que le caractère de Chern est multiplicatif.},
affiliation = {Université Paris 13, ENS Cachan, CMLA-LAGA, 61 avenue du Président Wilson, 94235 Cachan Cedex (France)},
author = {Ginot, Grégory},
journal = {Annales de l'Institut Fourier},
keywords = {Cyclic homology; algebraic $K$-theory; Chern character; Steinberg symbols; Loday Symbols},
language = {fre},
number = {7},
pages = {2327-2355},
publisher = {Association des Annales de l'Institut Fourier},
title = {Formules explicites pour le caractère de Chern en $K$-théorie algébrique},
url = {http://eudml.org/doc/116174},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Ginot, Grégory
TI - Formules explicites pour le caractère de Chern en $K$-théorie algébrique
JO - Annales de l'Institut Fourier
PY - 2004
PB - Association des Annales de l'Institut Fourier
VL - 54
IS - 7
SP - 2327
EP - 2355
AB - Dans cet article on donne une formule explicite pour le caractère de Chern reliant la $K$- théorie algébrique et l’homologie cyclique négative. On calcule le caractère de Chern des symboles de Steinberg et de Loday et on donne une preuve élémentaire du fait que le caractère de Chern est multiplicatif.
LA - fre
KW - Cyclic homology; algebraic $K$-theory; Chern character; Steinberg symbols; Loday Symbols
UR - http://eudml.org/doc/116174
ER -

References

top
  1. S.K. Brown, S. Kenneth, Cohomology of groups, 87 (1982), Springer-Verlag, New York-Berlin Zbl0584.20036MR672956
  2. J.-L. Cathelineau, λ -structures in algebraic K -theory and cyclic homology, -Theory 4 (1990-1991), 591-606 Zbl0735.19005MR1123180
  3. A. Connes, Noncommutative differential geometry, I, II, Publ. Math. Inst. Hautes Étud. Sci 62 (1985), 41-144 Zbl0592.46056MR823176
  4. R. K. Dennis, Differentials in algebraic K -theory, (1975) 
  5. R. K. Dennis, Algebraic K -theory and Hochschild homology, (1975-1976) 
  6. R. K. Dennis, M. R. Stein, K 2 of discrete valuation rings, Advances in Math 18 (1975), 182-238 Zbl0318.13017MR437620
  7. R. H. Fox, Free differential calculus. I. Derivation in the free group ring, Ann. of Math. (2) 57 (1953), 547-560 Zbl0050.25602MR53938
  8. Ph. Gaucher, Produit tensoriel de matrices, homologie cyclique, homologie des algèbres de Lie, Ann. Inst. Fourier, Grenoble 44 (1994), 413-431 Zbl0803.19003MR1296738
  9. S. C. Geller, Ch. A. Weibel, Hodge decompositions of Loday symbols in K -theory and cyclic homology, -Theory 8 (1994), 587-632 Zbl0824.19002MR1326752
  10. Th. G. Goodwillie, Relative algebraic K -theory and cyclic homology, Ann. of Math. (2) 124 (1986), 347-402 Zbl0627.18004MR855300
  11. Ch. E. Hood, J. D. S. Jones, Some algebraic properties of cyclic homology groups, -Theory 1 (1987), 361-384 Zbl0636.18005MR920950
  12. J. D. S. Jones, Cyclic homology and equivariant homology, Invent. Math 87 (1987), 403-424 Zbl0644.55005MR870737
  13. M. R. Kantorovitz, Adams operations and the Dennis trace map, J. Pure Appl. Algebra 144 (1999), 21-27 Zbl0937.19006MR1723189
  14. M. Karoubi, Homologie cyclique et K -théorie, 149 (1987), Soc. Math. France, Paris Zbl0648.18008MR913964
  15. Ch. Kassel, Cyclic homology, comodules, and mixed complexes, J. Algebra 107 (1987), 195-216 Zbl0617.16015MR883882
  16. Ch. Kassel, Homologie cyclique, caractère de Chern et lemme de perturbation, J. Reine Angew. Math 408 (1990), 159-180 Zbl0691.18002MR1058987
  17. Ch. Kratzer, λ -structure en K -théorie algébrique, Comment. Math. Helv 55 (1980), 233-254 Zbl0444.18008MR576604
  18. J.-L. Loday, K -théorie algébrique et représentations de groupes, Ann. Sci. École Norm. Sup. (4) 9 (1976), 309-377 Zbl0362.18014MR447373
  19. J.-L. Loday, Symboles en K -théorie algébrique supérieure, C. R. Acad. Sci. Paris, Sér. I Math. 292 (1981), 863-866 Zbl0493.18006MR623517
  20. J.-L. Loday, Cyclic homology, (1998), Springer-Verlag, Berlin Zbl0885.18007MR1600246
  21. J.-L. Loday, C. Procesi, Cyclic homology and lambda operations, 279 (1989), 209-224, Kluwer Acad. Publ., Dordrecht Zbl0719.19002
  22. J.-L. Loday, D. Quillen, Cyclic homology and the Lie algebra homology of matrices, Comment. Math. Helv 59 (1984), 569-591 Zbl0565.17006MR780077
  23. H. Maazen, J. Stienstra, A presentation for K 2 of split radical pairs, J. Pure Appl. Algebra 10 (1977/78), 271-294 Zbl0393.18013MR472795
  24. R. McCarthy, The cyclic homology of an exact category, J. Pure Appl. Algebra 93 (1994), 251-296 Zbl0807.19002MR1275967
  25. J. Milnor, Introduction to algebraic K -theory, (1971), Princeton University Press and University of Tokyo Press, Princeton, N.J. and Tokyo Zbl0237.18005MR349811
  26. Th. Mulders, Generating the tame and wild kernels by Dennis-Stein symbols, -Theory 5 (1991/92), 449-470 Zbl0761.11040MR1166514
  27. C. Soulé, Éléments cyclotomiques en K -théorie, (1987), 147-148, Soc. Math. France Zbl0632.12014
  28. B.L. Tsygan, Homology of matrix algebras over rings and Hochschild homology, Uspekhi Mat. Nauk 38 (1983), 217-218 Zbl0526.17006MR695483
  29. Ch. A. Weibel, Nil K -theory maps to cyclic homology, Trans. Amer. Math. Soc 303 (1987), 541-558 Zbl0627.18005MR902784
  30. Ch. A. Weibel, An introduction to algebraic K -theory 
  31. B.L. Tsygan, Homology of matrix algebras over rings and Hochschild homology, Russ. Math. Surveys 38 (1983), 198-199 Zbl0526.17006MR695483

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.