The radiation field is a Fourier integral operator
Antônio Sá Barreto[1]; Jared Wunsch
- [1] Purdue University, Department of Mathematics, 150 North University Street, West Lafayette IN 47907 (USA), Northwestern University, Department of Mathematics, 2033 Sheridan Rd., Evanston IL 60208 (USA)
Annales de l’institut Fourier (2005)
- Volume: 55, Issue: 1, page 213-227
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topSá Barreto, Antônio, and Wunsch, Jared. "The radiation field is a Fourier integral operator." Annales de l’institut Fourier 55.1 (2005): 213-227. <http://eudml.org/doc/116186>.
@article{SáBarreto2005,
abstract = {We show that the ``radiation field'' introduced by F.G. Friedlander, mapping Cauchy data
for the wave equation to the rescaled asymptotic behavior of the wave, is a Fourier
integral operator on any non-trapping asymptotically hyperbolic or asymptotically conic
manifold. The underlying canonical relation is associated to a ``sojourn time'' or
``Busemann function'' for geodesics. As a consequence we obtain some information about
the high frequency behavior of the scattering Poisson operator in these geometric
settings.},
affiliation = {Purdue University, Department of Mathematics, 150 North University Street, West Lafayette IN 47907 (USA), Northwestern University, Department of Mathematics, 2033 Sheridan Rd., Evanston IL 60208 (USA)},
author = {Sá Barreto, Antônio, Wunsch, Jared},
journal = {Annales de l’institut Fourier},
keywords = {Radiation field; sojourn time; Busemann function; high frequency; Eisenstein function; radiation field},
language = {eng},
number = {1},
pages = {213-227},
publisher = {Association des Annales de l'Institut Fourier},
title = {The radiation field is a Fourier integral operator},
url = {http://eudml.org/doc/116186},
volume = {55},
year = {2005},
}
TY - JOUR
AU - Sá Barreto, Antônio
AU - Wunsch, Jared
TI - The radiation field is a Fourier integral operator
JO - Annales de l’institut Fourier
PY - 2005
PB - Association des Annales de l'Institut Fourier
VL - 55
IS - 1
SP - 213
EP - 227
AB - We show that the ``radiation field'' introduced by F.G. Friedlander, mapping Cauchy data
for the wave equation to the rescaled asymptotic behavior of the wave, is a Fourier
integral operator on any non-trapping asymptotically hyperbolic or asymptotically conic
manifold. The underlying canonical relation is associated to a ``sojourn time'' or
``Busemann function'' for geodesics. As a consequence we obtain some information about
the high frequency behavior of the scattering Poisson operator in these geometric
settings.
LA - eng
KW - Radiation field; sojourn time; Busemann function; high frequency; Eisenstein function; radiation field
UR - http://eudml.org/doc/116186
ER -
References
top- I. Alexandrova, Structure of the semi-classical amplitude for general scattering relations Zbl1088.81091
- J. J. Duistermaat, Fourier integral operators, 130 (1996), Boston, MA Zbl0841.35137MR1362544
- J.J. Duistermaat, V.W. Guillemin, The spectrum of positive elliptic operators and periodic geodesics, Invent. Math 29 (1975), 39-79 Zbl0307.35071MR405514
- F. G. Friedlander, Radiation fields and hyperbolic scattering theory, Math. Proc. Cambridge Philos. Soc. 88 (1980), 483-515 Zbl0465.35068MR583989
- F. G. Friedlander, Notes on the wave equation on asymptotically Euclidean manifolds, J. Funct. Anal. 184 (2001), 1-18 Zbl0997.58013MR1846782
- C. Robin Graham, Volume and area renormalizations for conformally compact Einstein metrics, 63 (2000), 31-42 Zbl0984.53020
- V. Guillemin, Sojourn times and asymptotic properties of the scattering matrix, 12 (1976/77), 69-88, Kyoto Univ. Zbl0381.35064
- A. Hassell, J. Wunsch, The Schrödinger propagator for scattering metrics, (2003) Zbl1126.58016
- M. S. Joshi, A. Sá Barreto, Recovering asymptotics of metrics from fixed energy scattering data, Invent. Math. 137 (1999), 127-143 Zbl0953.58025MR1703335
- M. S. Joshi, A. Sá Barreto, Inverse scattering on asymptotically hyperbolic manifolds, Acta Math. 184 (2000), 41-86 Zbl1142.58309MR1756569
- J. Jost, Riemannian geometry and geometric analysis, third ed., (2002), Springer-Verlag, Berlin Zbl1034.53001MR1871261
- P.D. Lax, R.S. Phillips, Scattering theory, (1967), Academic Press, New York Zbl0186.16301MR1037774
- A. Majda, High frequency asymptotics for the scattering matrix and the inverse problem of acoustical scattering, Comm. Pure Appl. Math. 29 (1976), 261-291 Zbl0463.35048MR425387
- R. R. Mazzeo, R. B. Melrose, Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature, J. Funct. Anal. 75 (1987), 260-310 Zbl0636.58034MR916753
- R.B. Melrose, Spectral and scattering theory for the Laplacian on asymptotically Euclidian spaces,, Spectral and scattering theory (Sanda, 1992) (1994), 85-130, Marcel Dekker Zbl0837.35107
- R.B. Melrose, Geometric scattering theory, (1995) Zbl0849.58071
- R.B. Melrose, Spectral and scattering theory for the Laplacian on asymptotically Euclidian spaces, Spectral and scattering theory (Sanda, 1992) (1994), 85-130, Dekker, New York Zbl0837.35107
- V.M. Petkov, L.N. Stoyanov, Sojourn times, singularities of the scattering kernel and inverse problems, 47 (2003), Cambridge University Press, to appear. Zbl1086.35146MR2029684
- D. Robert, H. Tamura, Asymptotic behavior of scattering amplitudes in semi-classical and low energy limits, Ann. Inst. Fourier (Grenoble) 39 (1989), 155-192 Zbl0659.35026MR1011982
- A. Sá, Barreto, Radiation fields, scattering and inverse scattering on asymptotically hyperbolic manifolds Zbl1154.58310MR2169870
- A. Sá, Barreto, Radiation fields on asymptotically Euclidean manifolds, Comm. Partial Differential Equations 28 (2003), 1661-1673 Zbl1037.58020MR2001178
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.